Новые идеи в философии. Сборник номер 11 | страница 55
Антиномии оказались бы тогда, говоря словами Маймона, попытками установить отношение определяемости между понятиями, которые ни в каком отношении определяемости стоять не могут.
Эта скромная задача – введения нового рода обозначения, должна иметь, я думаю, немаловажные последствия. Знаем же мы немало примеров из истории науки, когда новое слово, новое обозначение, обобщающее в одну единую группу много отдельных случаев, оказывалось плодотворным и по существу дела.
Ход нашего исследования будет таков. Сначала мы познакомимся с метафизикой мнимых величин Гаусса, приведя его собственные определения, и затем покажем, что способ толкования Гаусса не ограничен одной областью математики. В заключение мы рассмотрим некоторые из тех объектов мышления, к которым по аналитической природе их могут быть применены определения Гаусса.
Прежде чем привести цитату из Гаусса, я позволю себе одно замечание. Согласно защищаемому здесь взгляду, метафизика мнимых величин Гаусса дает весьма общее указание, как устранять фиктивные понятия. Такие понятия встречаются не в одной только математике и метод их устранения везде один и тот же. Но этими фиктивными понятиями описывается совершенно абстрактно, какое может быть отношение между объектами мышления, совершенно отвлекаясь от вопроса о том, реализуется ли такая возможность конкретными условиями воззрения и опыта или нет. Эту возможность описывает первая часть цитаты Гаусса. Во второй же части показывается на частном случае, что воззрение на самом деле реализует описанную ранее возможность.
Гаусс дает метафизику картины, использованной уже в целях разъяснения Wallis'ом, когда он пишет:
«Положительные и отрицательные числа могут найти применение только там, где сосчитанному противостоит нечто противоположное, что в соединении с ним дало бы в результате нуль. Точнее говоря, это условие осуществляется только там, где сосчитанное составляют не субстанции (сами по себе мыслимые предметы), а отношения между двумя предметами. Постулируется при этом, что предметы эти располагаются определенным образом в один ряд, например, А, В, С, D… , и что отношение А к В может мыслиться равным отношению В к С и т. д. Здесь в понятие противоположности не входит ничего больше, кроме перестановки членов отношения, так что если отношение (или переход) от А к В есть + 1, то отношение от В к А должно быть выражено через – 1.
Так как такой ряд беспределен с обеих сторон, то всякое реальное целое число представляет отношение любого избранного началом члена к определенному члену ряда».