Новые идеи в философии. Сборник номер 11 | страница 56



(Простейший образ этого модуса перехода дает перемещение в пространстве. Если я перехожу от А к В и затем обратно от В к А, то общий результат моего относительного перемещения равен нулю. Я могу поэтому сказать: АВ ± ВА = 0).

«Если же предметы таковы, что они не могут быть расположены в один, хотя бы и беспредельный ряд, а могут располагаться только в ряды рядов, или – что то же самое – они образуют многообразие двух измерений; если, далее, с отношениями одного ряда к другому, или с переходами из одного в другой дело обстоит так, как с переходами от одного члена к другому члену того же ряда, то для измерения перехода от одного члена системы к другому нужны, очевидно, кроме прежних единиц + 1 и – 1, еще две другие противоположные друг другу единицы + i и – i. Кроме того, здесь должно еще, очевидно, постулировать, что единица i означает здесь всякий раз переход от одного данного члена ряда к определенному члену непосредственно примыкающего к первому ряда. Таким образом система может быть двояким образом расположена в ряды рядов.

Математик совершенно отвлекается от свойств предметов и содержания их отношений. Его задача ограничивается счетом и взаимным сравнением отношений. На этом основании он не только в праве считать однородными отношения, обозначенные через + 1 и – 1, но в праве распространить эту однородность и на все четыре элемента + 1, – 1, + i и – i.

Наглядно эти соотношения могут быть представлены только в пространстве. Простейший случай тот, в котором нет основания располагать символы предметов иначе, чем в квадрате: при помощи двух систем параллельных линий, перекрещивающихся под прямым углом, разделяют беспредельную плоскость на квадраты и точки пересечения избирают символами. Каждая такая точка А имеет четырех соседей, и если отношение точки А к какой-нибудь соседней точке обозначить через + 1, то тем самым уже определена точка, которую следует обозначить через – 1, между тем как через + i можно обозначить любую из двух других, или через + i можно по произволу обозначить точку справа и слева от точки А. Раз мы твердо (хотя и по произволу) установили, что такое вперед и назад в самой плоскости и что верх и низ относительно обеих сторон плоскости, то различие между правым и левым в себе вполне определено, хотя другим мы можем сообщить наше воззрение этого различия только ссылкой на действительно существующие материальные вещи. Но если мы и относительно последнего пришли к определенному решению, то нетрудно видеть, что все же от нашей воли зависит, какой из двух перекрещивающихся рядов назвать главным рядом и какое направление в нем связывать с положительными числами; далее видно также, что если отношение, которое раньше обозначалось через + i, теперь обозначать через + 1, то приходится отношение, которое раньше обозначалось через – 1, теперь обозначить через + i. На языке математиков это обозначает, что + i есть некоторая средняя пропорциональная величина между + 1 и – 1, что обозначается знаком √ – 1. Мы намеренно говорим «некоторая», потому что и – i тоже, очевидно, есть такая величина. Здесь, следовательно, наглядное значение √ – 1 вполне доказуемо, а больше ничего и не требуется, чтобы допустить эту величину в область предметов арифметики