Математическая планета. Путешествие вокруг света | страница 33



«Какой будет скидка?» — спросил я. «Отдам за 300» — ответила продавщица.

Скидка была не слишком большой, и я понял: цены на ценниках были не окончательными, но достаточно близкими к реальным. В любом случае вещь не досталась бы мне очень дешево. Теперь настала моя очередь предложить цену. Цены ниже 200 показались мне слишком низкими, поэтому я предложил 200. Продавщица согласилась на 280. Ее предложение несколько охладило мой пыл — новая цена была всего на 20 меньше предыдущей. Я предположил, что в итоге мы сойдемся на 250, но не хотел завершать торг слишком быстро. Я предложил 230 — чуть больше, чем 225.

Продавщица предложила 260. В конце концов я сказал, что 250 — моя последняя цена. Продавщица настаивала на 260, но я не сдавался. В итоге вещь досталась мне за 250.

После торга я спросил продавщицу, какую максимальную скидку она была готова предложить. Продавщица ответила: 25 % и добавила, что такова максимальная скидка в ее магазине, а в других местах, например на рынке, скидка могла быть намного больше. Таким образом, я провел неплохую сделку: вещь стоимостью 350 досталась мне за 250. Скидка оказалась больше 28 %.

На основе этих практических результатов я составил новую математическую модель торга. В значениях, приведенных в таблице, скрыто какое-то равновесие, а также они очевидно сходятся к итоговой цене, которая устроит и покупателя, и продавца. Какому закону подчиняется это равновесие? Предложим гипотезу: каждая цена представляет собой среднее значение двух последних предложенных цен. Иными словами, если x>0 — исходная цена, предложенная продавцом, x>1 — первая цена, предложенная покупателем, то общий член числовой последовательности, образующейся в ходе торга, задается формулой:


Это не что иное, как среднее арифметическое двух последних цен, упомянутых в торге. Приведенное выражение очень похоже на формулу общего члена в последовательности Фибоначчи. Сравним результаты трех предыдущих торгов с этой моделью, которую будем называть моделью средней цены.



Живительное сходство. Следовательно, в туристических местах торг можно достаточно точно описать моделью средней цены. Но как определить, к какому значению стремится цена в этой модели? На какой цене сойдутся покупатель и продавец в подобных ситуациях? Рассмотрим начальные цены трех предыдущих торгов и посмотрим, что произойдет.



Что общего у этих чисел и пар начальных значений цен (45, 20), (80000, 40000) и (350, 200)? Если мы посмотрим на соответствующие графики, то заметим явное сходство.