Геометрия, динамика, вселенная | страница 54



В квантовой механике состояние представляется волновой функцией Ψ. Вообще говоря, функция Ψ — комплексное число; среднее значение какой-либо динамической величины A равно интегралу

--\

\ * = \ Ψ| (x) A Ψ (x) dx, (47)

\

\

\-

x — точка в пространстве Минковского. Ясно, что значение величины инвариантно относительно преобразования

i ALPHA PSIG'(x) — > e||||||| Ψ (x). (48)

Инвариантность величины - следствие тождества i ALPHA — i ALPHA e||||||| * e|||||||| = 1 и того, что комплексно-сопряженная.

* * функция Ψ| (x) преобразуется по закону Ψ| (x) — > — i ALPHA * e|||||||| Ψ| (x). Следовательно, состояние системы,

* которое определяется произведениями Ψ| A Ψ, инвариантны относительно преобразований (48), которые характеризуются изменениями фазы ALPHA. Существенно, что в приведенном примере ALPHA = const (x). Поэтому преобразование (48) называется глобальным фазовым (калибровочным) преобразованием.

В известном смысле глобальное фазовое преобразование не согласуется с основным принципом теории относительности конечностью скорости передачи информации. Действительно, в нашем распоряжении нет возможности согласовать этот принцип с синхронизацией какой-либо величины (в том числе и фазы ALPHA) во всем бесконечном пространстве. Здесь не случайно сделана оговорка «в известном смысле», так как на практике обычно рассматриваются конечные области пространства. Однако принципиальный вопрос остается. Поэтому целесообразно обобщить инвариантность (48), требуя, чтобы фаза ALPHA зависела от положения системы ALPHA = ALPHA (x) ≠ const (x), а функция Ψ преобразовывалась по закону

i ALPHA(x) PSIG'(x) — > e|||||||||| Ψ (x). (49)

Инвариантность такого типа называется локальной калибровочной инвариантностью. Оказывается, что требование уравнений динамики относительно локальной калибровочной инвариантности однозначно определяет уравнения поля.

Остановимся сначала на уравнениях электродинамики. Как известно, ее уравнения (уравнения Максвелла или Дирака) определяются значением функций (полей) и их первыми производными. Выше отмечалось, что физические величины не зависят от значения фазы ALPHA. Однако эта независимость сохраняется для производных лишь при условии ALPHA=const(x), т. е. при глобальных преобразованиях. В общем случае (ALPHA=ALPHA(x)) производная

∂ Ψ i ALPHA(x) ∂ Ψ(x) —--- — > e|||||||||| [------ + ∂ x ∂ x

∂ ALPHA (x) + Ψ (x) —------] (50)

∂ x

и, следовательно, неинвариантна относительно локальных калибровочных преобразований.