Геометрия, динамика, вселенная | страница 55



Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов

A|'(x) — > A|(x) + ∂ ALPHA (x) / ∂ x, (51) ю ю

с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51).

С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые.

Калибровочные преобразования (49), (51) — необходимые и достаточные условия уравнений электродинамики.

Сделаем в заключение три важных замечания.

1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т. е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского.

2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат.

3. Таким образом, можно установить эквивалентность следующих утверждений:

уравнения движения (поля) — калибровочно инвариантны,

заряд в замкнутой системе сохраняется,

силы в статическом случае дальнодействующие,

масса частицы переносчика взаимодействия m|||||=0.

GAMMA

Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m ≠ 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности.[11]

8. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СОСТОЯНИЙ

Рассмотрим пример: систему невзаимодействующих частиц, движущихся по классическим траекториям. Каждой частице в момент времени t соответствуют свои координаты и проекции импульса. Таким образом, каждой точке видимого пространства соответствует значение вектора импульса. Можно рассматривать движение системы частиц в этом пространстве, не придавая совокупности импульсов никакого геометрического смысла. Кроме того, можно полагать, что вся совокупность координат играет роль базы, а векторы импульсов — слоев. При отсутствии взаимодействия подобное расслоенное пространство тривиально, а использование в данном случае образа расслоенного пространства и его несколько непривычных для физиков понятий — ненужное усложнение. Разумнее рассматривать изолированно два пространства: конфигурационное (координаты) и импульсное.