Геометрия, динамика, вселенная | страница 52



1 2 Суммарное поле FI на расстоянии r можно представить в общем виде:

FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r)+FI |(e|,e|,r). (42)

1 2 1 1 2 2 3 1 2

Произведем калибровочное преобразование, соответствующее каждому из зарядов:

FI'[(e|+e|), r] — > FI[(e|+e|), r] + b,

1 2 1 2

FI'(e|,r) — > FI |(e|,r) + b, (43)

1 1 1

FI'(e|,r) — > FI |(e|,r) + b.

2 2 2

Уравнения (42) и (43) совместны, если FI(e|,e|,r) = — b = const(r), что соответствует глобальному

1 2 калибровочному преобразованию. Иначе говоря, из него следует принцип суперпозиции:

FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r), (44)

1 2 1 1 2 2

который также отражает слабость взаимодействия.

Мы до сих пор рассматривали систему из двух частиц. Однако вследствие принципа суперпозиции все выводы нетрудно обобщить на статическую систему, состоящую из любого числа частиц.

Таким образом, электростатика, базирующаяся на законе Кулона, — следствие калибровочной инвариантности. Очевидно (к этому мы привыкли из школьного курса физики) и обратное утверждение: глобальное калибровочное преобразование следствие закона Кулона. Калибровочная инвариантность взаимосвязана с электростатикой. Далее мы проиллюстрируем общность взаимосвязи динамики и калибровочной инвариантности.

Остановимся на другом важнейшем следствии калибровочной инвариантности. Опираясь на факт существования функции FI(x), которая определяет работу при перемещении пробного тела из точки x| в точку x|, можно сделать вывод о

1 2 сохранении заряда (пока в рамках электростатики). Действительно, по определению, заряд — мера воздействия тела (в нашем примере тела отсчета) на силовое поле или мера реакции пробного тела на величину силового поля. Пусть по пути из точки x| в точку x| заряд пробного тела изменится, а

1 2 заряд тела отсчета останется неизменным. Тогда работа не будет определяться исключительно разностью FI(x|)-FI(x|). Аналогичное рассуждение можно провести, полагая, что заряд тела отсчета изменится.

Однако в силу принципа суперпозиции (см.(44)), если оба тела соприкоснутся, заряд с одного тела может перейти на другое тело. Принцип суперпозиции вполне консистентен переходу заряда от одного тела к другому при условии сохранения суммы зарядов.

Таким образом, мы продемонстрировали закон сохранения заряда для системы, состоящей из двух тел. Далее мы поясним этот закон в общем случае и в случае нестатических систем. До сих пор мы анализировали простейшую физическую ситуацию электростатику. Однако вид калибровочной инвариантности однозначно определяет и самые общие уравнения движения и форму квантовой теории полей. Здесь же мы лишь наметим аргументацию этого утверждения. Дело в том, что его доказательство в полном объеме требует хорошего знакомства с квантовой теорией поля. Но даже и на таком уровне весь комплекс вопросов, основанный на принципе калибровочной инвариантности, на наш взгляд, изложен в литературе (особенно учебной) неполно. И этот факт прискорбен. Хотя, по нашему мнению, аксиоматическое изложение физики невозможно, однако выявление основных принципов и дедуктивное ее изложение кажется весьма целесообразным как с дидактических позиций, так и с точки зрения выявления общих граней разнородных физических объектов и теорий. Сейчас же в учебной литературе (в том числе в курсах теоретической физики) калибровочный принцип излагается походя, как бы между прочим. В специальной же литературе, посвященной калибровочной теории, обычно затрагиваются не все аспекты этого принципа. Мы попытаемся дать лаконичное и поэтому не слишком строгое изложение основных сторон этого принципа.