Я — математик. Дальнейшая жизнь вундеркинда | страница 70
Эйнштейн сформулировал теорию относительности в 1905 году, в том же году он внес существенный вклад в квантовую теорию. Он показал, что один из коэффициентов, характеризующих фотоэлектрический эффект — физическое явление, заключающееся в том, что поглощение или излучение света при некоторых условиях оказывается связанным с появлением электричества, — по величине и по размерности оказывается точно совпадающим со знаменитой постоянной, введенной Планком в квантовую теорию. Семь лет спустя, в 1912 году, датчанин Нильс Бор обнаружил, что эту же постоянную можно использовать для количественного описания процесса излучения света атомами раскаленного водорода.
Предложенная Бором теория излучения света атомом водорода была блестящей, но отнюдь не совершенной. Фактически она являлась поразительным гибридом, полученным с помощью прививки некоторых черт квантовой теории, исходящей из представлений о разрывности материи, к теории планетных орбит — типичной классической теории, рассматривающей мир как нечто непрерывное. Из этого неестественного скрещивания и родилась принадлежащая Бору модель атома, успешно объясняющая целый ряд наблюдаемых количественных закономерностей, но теоретически лишенная какого-либо единства. К 1925 году, когда состоялось мое выступление в Геттингене, мир начал настойчиво требовать такой квантовой теории, которая объясняла бы все наблюдаемые явления и в то же время была бы единой теорией, а не лоскутным одеялом, состоящим из пестрых, ничем не связанных и философски противоречивых положений.
Я тогда ничего не знал о напряженном интересе, который вызывала в Геттингене противоречивость квантовой теории. Однако случилось так, что мой доклад касался вопросов, чем-то родственных квантовой теории — в нем также рассматривалось поле, в котором применение обычных законов не могло быть распространено на любые сколь угодно малые размеры. Как я уже говорил, тема моего доклада относилась к области гармонического анализа, т. е. разложения сложных движений на сумму простейших гармонических колебаний. Гармонический анализ, усиленно развивающийся все последние годы в целом ряде различных направлений, имеет древнюю историю, восходящую еще к Пифагору, интересовавшемуся музыкой вообще и колебаниями струн лиры в частности. Известно, что струна может совершать множество различных колебаний, самые простые и элементарные из которых и называются гармоническими колебаниями. Движение струны музыкального инструмента на самом деле не является точно гармоническим колебанием, но оно представляет собой простую комбинацию колебаний, поэтому в виде первого грубого приближения все-таки может считаться гармоническим.