Новый взгляд на мир. Фрактальная геометрия | страница 16
Изображение круглого бассейна в зависимости от положения наблюдателя.
>(Источник: Мария Изабель Бинимелис.)
Открытия Дезарга позволили разработать общую теорию проекций, изучением которой занимались геометры первой половины XIX в., среди которых отметим Гаспара Монжа и Жан-Виктора Понселе. Благодаря проективной геометрии, созданной этими математиками, стала возможной разработка неевклидовых геометрий и евклидовых моделей для них. В первых книгах о перспективе, написанных французскими исследователями начала XVII в. на основе работы Дезарга, описывалась так называемая проекция Кавалье, или военная перспектива. В 1794 г. Монж описал теорию построения ортогональных проекций трехмерных объектов на плоскости. Созданная Монжем дисциплина сегодня называется начертательной геометрией и используется при построении чертежей. В свое время начертательная геометрия в корне изменила военно-инженерное дело.
Ортогональная проекция.
>(Источник: Лаура Элизабет Виолант)
В архитектуре эта проекция стала использоваться значительно позже: проекция Кавалье и аксонометрическая проекция (в ней трехмерный объект изображается на чертеже при помощи проекций на три оси, находящиеся на плоскости чертежа) стали применяться в конце XIX в.
Вклад Дезарга можно вкратце описать так: в параллельной проекции эпохи Возрождения лучи зрения считались параллельными; в теории Дезарга они сходятся в бесконечно удаленной точке. Иными словами, проекция Кавалье равносильна центральной проекции, в которой взгляд художника «обращен в бесконечность». Русский художник-супрематист Эль Лисицкий полагал, что с появлением этой проекции с субъективной живописью будет покончено, так как не будет существовать точки, в которой находится наблюдатель: художник берет на себя роль творца, поскольку его взгляд исходит из бесконечности.
ПОЯВЛЕНИЕ КООРДИНАТ
Появление работ Рене Декарта и Пьера Ферма, создателей так называемой аналитической геометрии, ознаменовало начало современной геометрии. Они впервые ввели оси координат, с помощью которых точки геометрических фигур можно выразить в численном виде. Следовательно, появляется возможность использовать алгебраические методы. Таким образом, геометрические задачи сводились к алгебраическим. Решение алгебраической задачи позволяло дать ответ к исходной, геометрической задаче.