Теорема века. Мир с точки зрения математики | страница 112
Интеграл есть предел, к которому стремится сумма членов, когда число этих членов беспредельно возрастает. Если членов очень много, то сумма будет очень мало отличаться от своего предела, т. е. от интеграла, и то, что я сказал о последнем, будет справедливо и для суммы.
Тем не менее существуют исключительные случаи.
Если бы, например, для всех малых планет имело место равенство b = π/2 – at, то в момент t долгота всех планет равнялась бы π/2 и среднее значение было бы, очевидно, равно 1. Для этого было бы необходимо, чтобы в момент t = 0 все малые планеты были размещены на некоторой спирали особенной формы с крайне тесно сближенными витками. Всякий признает, что подобное начальное распределение крайне невероятно (и даже если допустить его в действительности, то распределение было бы неравномерным для некоторого момента, например, 1 января 1900 г., но оно перешло бы в равномерное через несколько лет).
Однако почему мы признаем такое начальное распределение невероятным? Необходимо это выяснить, так как если бы мы не имели основания отбросить эту нелепую гипотезу как не заслуживающую доверия, то все бы рушилось и мы уже ничего не могли бы утверждать относительно вероятности того или иного действительного распределения.
Мы опираемся здесь опять-таки на принцип достаточного основания, принцип, к которому постоянно приходится возвращаться. Мы могли бы допустить, что вначале планеты были распределены приблизительно на прямой линии или что они были расположены неравномерно; но, как нам кажется, нет достаточного основания предполагать, что неизвестная причина, породившая их, действовала, следуя столь правильной и в то же время столь сложной кривой, которая представлялась бы выбранной умышленно как раз для того, чтобы нынешнее распределение не было равномерным.
IV. Красное и черное. Вопросы теории азартных игр, например игры в рулетку, в сущности, вполне аналогичны тем, которые мы только что рассматривали.
Представим себе циферблат, разделенный на большое число равных делений, попеременно красных и черных; в центре его укреплена вращающаяся стрелка; после сильного разгона эта стрелка, сделав значительное число оборотов, остановится против одного из делений. Вероятность того, что это деление красное, очевидно, равна х/2.
Стрелка повернулась на угол θ, заключающий в себе несколько окружностей: я не знаю, какова вероятность того, что стрелка отброшена с такой силой, чтобы этот угол был заключен между θ и θ