Теорема века. Мир с точки зрения математики | страница 109



остается тем же, когда и возрастает на 2π, то я могу, не ограничивая общности, допустить, что и заключено между 0 и 2π, и таким образом приду к допущению, что φ(а) есть периодическая функция с периодом 2π.

Искомое вероятное значение легко выражается простым интегралом, и легко показать, что этот интеграл меньше, чем

2π (M>k / n>k),

где Mk – наибольшее значение k-й производной функции φ(u). Итак, мы видим, что если k-я производная конечна, то наша вероятная величина стремится к нулю, когда n возрастает беспредельно, и притом быстрее, чем

1/n>k-1.

Итак, вероятное значение sin nu для очень большого n есть нуль; чтобы определить это значение, мне необходимо было сделать условное допущение, но результат остается тем же, каково бы ни было это условное допущение. Я наложил лишь небольшие ограничения, допуская, что функция φ(а) есть непрерывная и периодическая, и эти гипотезы столь естественны, что неясно, как можно было бы их избежать.

Обсуждение трех предыдущих примеров, столь различных во всех отношениях, до некоторой степени обнаруживает, с одной стороны, значение того, что философы называют принципом достаточного основания, а с другой – важность того факта, что некоторые свойства являются общими для всех непрерывных функций. Изучение вероятности в физических науках приведет нас к тому же результату.

III. Вероятность в физических науках. Перейдем теперь к проблемам, относящимся к тому, что я назвал выше второй степенью незнания; это – те проблемы, в которых известен закон, но неизвестно начальное состояние системы. Я мог бы умножать число примеров, но я возьму только один; каково в настоящее время вероятное распределение малых планет на зодиаке?

Мы знаем, что они подчиняются законам Кеплера: мы можем даже, не изменяя ничего в природе проблемы, допустить, что все их орбиты круговые и расположены в одной и той же известной нам плоскости. Зато мы совершенно не знаем, каково было их начальное распределение. И все же мы, не колеблясь, можем утверждать, что теперь это распределение приблизительно равномерно. Почему?

Пусть b будет долготой малой планеты в начальный момент, т. е. в момент, равный нулю, пусть а – средняя скорость ее движения; ее долгота в настоящий момент t будет at + b. Сказать, что распределение планет в настоящий момент равномерно, это все равно что сказать, что средняя величина из синусов и косинусов кратного аргумента at + b есть нуль. Почему же мы утверждаем это?