Правила счета элементов бесконечного множества | страница 25
Итак, после тривиального преобразования координат точки квадрата в мнемоническую запись, с ними производится манипуляция, которая также не имеет веско аргументированного, рационального смысла. Перетасовыванием знаков двух чисел формируется новое число:
Обратим внимание на следующее интересное замечание и на приведенный далее способ отождествления:
"для простоты мы не берем точки квадрата, лежащие на его сторонах, а берем лишь внутренние точки… Нам надо теперь найти точку Q отрезка АВ, соответствующего точке Т" [3, с.78].
Для "простоты" – это, прямо скажем, – лукавство. Этим упрощением отбрасывается неразрешимое противоречие совпадения линии и стороны квадрата.
Точка T – это точка в квадрате с указанными координатами x и y. Координата точки отрезка выбирается по принципу Q = z. Далее делается ожидаемый вывод: точке T квадрата поставлена в соответствие точка Q отрезка [0, 1]. Следовательно, всем различным точкам квадрата соответствуют разные точки отрезка и тем самым установлено взаимно однозначное соответствие между точками квадрата и точками отрезка. Из этого также делается вывод, что множество точек квадрата имеет такую же мощность (количество), что и множество точек отрезка (их количество).
Такие выводы противоречат не только здравому смыслу, но и логике, поскольку налицо подмена понятий. Сначала обратим внимание на то, что же отождествляется. А отождествляется координата точки отрезка и некоторое комбинационное число, которое вообще-то координатой не является. Действительно, координатой чего мы можем признать сборку – число z? Какое отношение эта комбинация знаков имеет к координатам x, y точки квадрата? Координаты – это два числа (так сказать, две штуки), а z – это одно число (одна штука). По существу, число z является для координат x, y своеобразным индексом. Иными словами, мы здесь отождествили не две точки, а точку и некий индекс. Но индекс чего? Квадрат – это плоская фигура, следовательно, каждая его часть изначально должна рассматриваться как такая же плоская фигура, фигура с площадью. И мы фактически отождествили не две точки, а