Правила счета элементов бесконечного множества | страница 24



"Но вдруг и квадрат можно как-то разбить на части, а потом эти части положить на прямую, чтобы они не задевали друг друга?" [3, с.59].

Алгебраически с учетом равной метрики, как показано выше, это возможно: вытянуть квадрат в линию. Такой способ совмещения, алгебраический сразу же высвечивает противоречивость решения Кантора. К сожалению, автор цитаты не стал развивать эту идею дальше.

Для сравнения двух множеств точек следует попытаться установить однозначное соответствие между этими точками, то есть, показать, что точки обоих этих множеств можно объединить, скажем, в пары (a, b), такие, что каждый элемент, каждая точка a принадлежит линии, а каждый элемент, точка b – квадрату, причем каждый из элементов a и b попал только в одну пару [3, с.59].

Согласно Кантору два бесконечных множества – точки линии и квадрата – имеют одинаковое количество элементов, если между этими элементами можно установить указанное однозначное соответствие. В математике обычно говорят о мощности множества, подразумевая под нею количество его элементов. Следовательно, отрезок и квадрат, построенный на нем, по Кантору имеют одинаковую мощность. Для доказательства этого он использует следующий метод. В системе координат x0y простроен квадрат ABCD, причем точка A совпала с началом координат, а точка B лежит на оси x. Не всякий способ позволяет установить взаимное однозначное соответствие между точками квадрата и отрезка:

"Проектирование точек квадрата на отрезок АВ здесь не помогает, ведь при проектировании в одну точку отрезка перейдет бесконечное множество точек квадрата (например, в точку А – все точки отрезка DA)" [3, с.77].

Однако такое обоснование нас, разумеется, устроить не может, поскольку это решение верное, но оно все-таки отбрасывается. Координаты каждой точки квадрата можно представить в мнемоническом виде:



В этих записях каждый символ α, β представляет собой какую-либо цифру из 0…9. То есть, x и y – это просто два дробных числа, меньшие единицы. Здесь следует, кстати, выразить недоумение по поводу отождествления чисел вида 0,50000… и 0,499999....

"…например, 0,500000… и 0,49999999…– это одно и то же число. Для определенности будем пользоваться записью с нулями" [3, с.73].

В частности, вопрос: отождествляются только такие числа? А, например, числа 0,550000… и 0,549999… не отождествляются по такому же принципу? Это правило, собственно говоря, не выдумка. Например, его использует офисная программа MS Excel, правда, с противоположной "определенностью". Там любое целое число в одном из представлений так и записывается: с множеством девяток в конце. Но в нашем случае мы рассматриваем числа в их