Восемь этюдов о бесконечности. Математическое приключение | страница 28
Со здоровьем у Рамануджана дела обстояли далеко не так блестяще, как с математикой. В 1920 г., вскоре после возвращения в Индию, он умер в возрасте всего 32 лет.
Начиная с 2005 г. за открытия, сделанные на основе его работ, ежегодно присуждается премия имени Рамануджана, учрежденная университетом SASTRA[13]. Ее могут получить только математики не старше 32 лет – того возраста, в котором сам Рамануджан расстался не только с жизнью, но и с числами, которые он так любил.
В 2009 г. (в котором было подготовлено первое издание этой книги) премию получила немецкий математик Катрин Брингман. Последняя на момент написания этого текста премия была присуждена украинскому математику Марине Вязовской, которая решает задачи в 8- и 24-мерном пространствах!
Вернемся, однако, к интересным числам, о которых мы говорили в предыдущей главе.
Однажды Харди навещал болевшего Рамануджана. Харди упомянул, что приехал в такси, на котором стоял номер 1729. «Какое необычайно скучное число!» – воскликнул Харди. «Ничего подобного! – пылко возразил Рамануджан. – На самом деле 1729 – число чрезвычайно интересное! Неужели вы не понимаете, что это самое малое число, которое можно выразить в виде суммы кубов двух положительных целых чисел двумя разными способами? Первый – 1 в кубе плюс 12 в кубе. Второй – сумма 10 в кубе и 9 в кубе». Вот как это можно записать:
1729 = 12³ + 1³ = 10³ + 9³.
Когда я рассказываю эту историю своим друзьям, их обычно поражает тот факт, что кто-то сумел моментально вычислить, что число 1729 можно представить в виде суммы двух кубических чисел. Меня же, честно говоря, поражает тот факт, что Рамануджан знал, что 1729 – наименьшее число, обладающее этим свойством. Откуда он мог это знать? Понятия не имею!
Разумеется, мы говорим здесь только о положительных числах. Если бы можно было использовать и отрицательные, мы могли бы найти величину, меньшую 1729. Например, 91 = 6³ + (–5)³ = 4³ + 3³.
Любое целое положительное число было одним из личных друзей Рамануджана.
Джон Литлвуд
Я хотел бы отметить, что у числа 1729 есть еще несколько интересных свойств. Больше всего мне нравится то из них, которое обнаружил японский математик и писатель Масахико Фудзивара (р. 1943){11}. Он показал, что 1729 – одно из всего лишь трех чисел, обладающих следующим свойством: сумма его цифр, умноженная на число, симметричное этой сумме, дает исходное число.
1 + 7 + 2 + 9 = 19.