Хороший доктор. Как найти своего врача и выжить | страница 64



Пациент. Даже не знаю, плакать мне или радоваться.

Доктор Джонс. Учитывая единственную альтернативу, не лучше ли рассчитывать на то, что вы поправитесь?

Пациент. Может быть, доктор, может быть.

Все это, безусловно, справедливо, но ведь, с другой стороны, мало просто рассчитывать на лучший исход: наш воображаемый пациент и его врач должны определить максимально эффективную стратегию лечения. Ни один из трех основных способов борьбы с раком — операция, лучевая терапия или химиотерапия — ни порознь, ни в комплексе не лишены серьезных побочных эффектов. Ну и как в данном случае выбрать лечение, которое с наибольшей вероятностью увенчается успехом и при этом нанесет наименьший вред?

Несмотря на здравый аргумент, что выводы статистических исследований могут не подходить конкретному пациенту, от чего-то все же надо отталкиваться, и потому мы начинаем с костюма усредненного размера — статистических данных тщательно проведенных и проанализированных испытаний на группах пациентов с таким же заболеванием. В конце концов лучше уж такой костюм, чем вообще никакого.

Итак, это исходная точка. И куда мы из нее направимся? Простите, но необходимо сказать еще несколько слов о статистике, поскольку именно так большинство людей измеряет ценность научных данных.

В исследованиях на группах пациентов эффекты вмешательства анализируются на основе частотности — среднее значение, медиана, доверительный интервал и проч.; все показатели отдельных больных вливаются в сверхчисла, описывающие целую популяцию и считающиеся статистически значимыми; p < 0,05 = вероятно, p > 0,05 = возможно, нет. Но эти числа не относятся напрямую к отдельному человеку даже в группе испытуемых, не говоря уже о пациенте, который сидит сейчас в кабинете врача, с тревогой ожидая рекомендаций по лечению. Некоторые статистики занимаются этой проблемой и пытаются расширить свои умения, чтобы разобраться с тем, как использовать информацию, полученную от группы, в конкретных условиях. Такие попытки предпринимались еще в середине XVIII века.

На пути осмысления упомянутых выше сомнений относительно статистики хороший доктор также обязательно познакомится с преподобным Томасом Байесом[98], пресвитерианским священником из города Танбридж-Уэллса, что в английском графстве Кент. Байес, человек грузный и мрачный, если судить по предполагаемому портрету, был не только богословом, но и математиком и внес существенный вклад в статистику, поскольку изучал теорию вероятностей. Он родился около 1701 г. и умер в возрасте 59 лет, так и не опубликовав главную работу своей жизни. Его записки о том, что впоследствии получило название «теорема Байеса», выпустил через два года после смерти священника его друг Ричард Прайс. Статья в