В поисках бесконечности | страница 21



Из геодезических линий можно строить треугольники, четырехугольники и т. д. При этом на любой кривой поверхности, как и на сфере, сумма углов треугольника не будет, вообще говоря, равна π. Кривизной треугольника, отнесенной к единице площади, мы снова назовем число >(α + β + γ — π)/>S. Однако на произвольных поверхностях это число будет для различных треугольников различным. Более того, оно может быть для одних треугольников положительным, а для других — отрицательным (треугольники могут иметь не только избыток, но и недостаток).

Чтобы найти кривизну в какой-то точке поверхности, надо брать все меньшие и меньшие треугольники, охватывающие эту точку, и искать их кривизну, отнесенную к единице площади. В пределе мы получим кривизну поверхности в данной точке. Это определение кривизны дал Гаусс, и ее обычно называют гауссовой кривизной. Если треугольники имеют избыток, то гауссова кривизна поверхности положительна, а если сумма углов меньше π, то кривизна отрицательна.

Если поверхность выпукла, то ее гауссова кривизна во всех точках положительна, а для бублика, изображенного на рис. 5 (математики называют его тором), в одних точках гауссова кривизна положительна, а в других — отрицательна.

Рис. 5


Замечательным свойством гауссовой кривизны является то, что она не меняется при изгибании поверхности, то есть при ее преобразованиях, не изменяющих расстояний между точками. Отсюда ясно, например, что во всех точках цилиндра гауссова кривизна равна нулю. Ведь цилиндр получается изгибанием куска плоскости, а кривизна плоскости равна нулю. Равна нулю гауссова кривизна и во всех точках конуса, кроме его вершины.

Псевдосфера и геометрия Лобачевского.

На сфере во всех точках кривизна одна и та же, и притом положительна. А есть поверхность постоянной отрицательной кривизны. Ее называют псевдосферой. Она получается следующим образом.

Представим себе, что в точке A стоит человек, который держит на поводке собаку (рис. 6). Вначале собака находится в точке O. После этого она бежит по прямой Oz с постоянной скоростью, а ее хозяин бежит вслед за ней так, что его скорость все время направлена вдоль поводка. Поэтому сначала хозяин бежит в направлении AO. Но по мере того, как собака продвигается по прямой Ox, направление бега хозяина образует все меньший угол с этой прямой, причем расстояние от бегущего человека до прямой Ox становится все меньше. На рис. 6 изображена линия, по которой бежит человек. Она называется