Математика для взрослых. Лайфхаки для повседневных вычислений | страница 61
Лестница, стена и поверхность земли образуют прямоугольный треугольник. Если вы измерили угол между лестницей и землей (он равен 72°), то можете вычислить, на какой высоте находится желоб, чтобы не теряться, отвечая потом на вопросы работников скорой помощи.
Лестница является гипотенузой треугольника, и она равна 8. Высота, которую мы хотим узнать, – это сторона, противолежащая углу в 72°, так что можем составить простое уравнение:
Умножив обе части уравнения на 8, получим
Чтобы вычислить синус на калькуляторе, введите ‹>sin 72 =
› и получите 0,951.
Затем умножим это число на 8 – выйдет 7,608. Это и есть высота от земли до желоба в метрах!
Косинус (cos) и тангенс (tg) – это дроби, представляющие отношения других сторон треугольника друг к другу.
И это практически все, что вам нужно знать о тригонометрии…
Логарифм: это что за чертовщина?
Всякий раз, когда разговор заходит о самых мрачных и зловещих тайнах математики, как правило, вспоминают о логарифмах. На многих это слово навевает кошмары, полные бессмысленных чисел и язвительных учителей. Однако теперь, когда школа позади, не пора ли все же разобраться, что это такое? Не будет ни тестов, ни контрольных, ни летающих губок для вытирания доски – чудовище не сможет вам навредить.
Логарифмы в 1645 году изобрел шотландец Джон Непер, и на протяжении 350 лет (пока не изобрели калькуляторы) они были единственным верным средством для быстрого умножения и деления очень больших чисел. Так в чем же суть логарифмов?
Возьмем весьма простое выражение:
Иначе его можно записать как 103 × 102 = 105 – это абсолютно то же самое, однако вместо того, чтобы перемножать большие числа, мы просто сложили степени: 3 + 2 = 5. Джон Непер понял, что любое число можно представить в виде степени числа 10, после чего для умножения или деления чисел достаточно лишь складывать или вычитать их степени.
Но вот незадача: такие степени редко бывают красивыми ровными числами, например 78 = 101,89209. Когда степени становятся затейливыми десятичными дробями, их называют логарифмами. Поскольку 78 = 101,89209, можно сказать, что логарифм от 78 равен 1,89209.
Перевод чисел в логарифмы – крайне утомительный процесс, но соратник Непера по имени Генри Бригс облечил его, разработав для подобных преобразований так называемые логарифмические таблицы. Некоторые из таблиц позволяли получить лишь три знака после запятой: 78 = 101,892. А по наиболее точным таблицам Бригса выходило, что 78 = 101,89209460269048. Соответственно, чем точнее логарифмы, тем точнее результат вычислений. (Исаак Ньютон, изучая движения звезд и планет, дошел в вычислении логарифма до 50 знаков после запятой, но его увлеченность граничила с манией.)