Убийственные большие данные | страница 97



Френология была моделью, которая, основываясь на псевдонаучной чепухе, изрекала авторитетные выводы – и десятилетиями никто не подвергал ее проверке. Большие данные могут попасть в эту же ловушку. Модели, подобные тем, которые отвергли кандидатуру Кайла Бема, а также иностранных студентов в больнице Святого Георгия, могут не давать людям устроиться на работу – даже если «научность» этих моделей заключается в кучке непроверенных допущений.

Нервное расстройство: на работе

Работники больших корпораций в Америке недавно придумали новый термин ««заоткрытие»» (clope-ning) – это когда наемный сотрудник работает допоздна и поздно вечером, уходя последним, закрывает магазин или кафе, а через несколько часов приходит первым до рассвета, чтобы его открыть. Тот факт, что открывает и закрывает («заоткрывает») заведение один и тот же работник, имеет большой смысл с точки зрения логистики компании. Но для работника это означает дефицит сна у сотрудников и совершенно безумное рабочее расписание.

Такие нерегулярные расписания становятся все более массовым явлением, которое больше всего затрагивает низкооплачиваемых работников в компаниях вроде Starbucks, McDonald’s и Walmart. Отсутствие предварительных уведомлений лишь усугубляет проблему. Многие работники всего за день-два узнают, что им нужно будет выйти в ночь на среду или работать в пятницу, когда посетителей особенно много. Это вносит в их жизнь хаос и осложняет присмотр за детьми. Есть приходится буквально на ходу – как и спать.

Подобные нерегулярные расписания – один из плодов экономики данных. В предыдущей главе мы видели, как оружие математического поражения перебирает кандидатов на работу, кого-то при этом занося в черный список, но гораздо большее число – просто игнорируя. Мы видели, как в код программного обеспечения часто вписываются токсичные предубеждения – и в процессе обучения программа лишь усугубляет несправедливость. В этой главе мы продолжим путешествие по офисам и другим местам работы, где ОМП, полностью сконцентрированное на эффективности, третирует работников как винтики механизма. «Заоткрытие» – лишь одно проявление этой тенденции, которая, скорее всего, будет лишь усиливаться по мере распространения систем наблюдения на рабочих местах. А это, в свою очередь, будет еще больше подпитывать экономику данных.

В течение десятилетий, еще до того, как компании начали буквально купаться в данных, составление рабочих расписаний имело мало общего с наукой. Представьте себе семейное предприятие – например, маленький магазин хозяйственных товаров, работающий с девяти до пяти шесть дней в неделю. В один прекрасный день дочь владельцев магазина поступает в колледж. Приехав на лето домой, она смотрит на семейный бизнес свежим взглядом. И замечает, что практически никто не заходит в магазин по утрам во вторник. Продавщица спокойно сидит в своем смартфоне, и никто ее не прерывает. Здесь явно можно говорить о недополученной прибыли. Зато в субботу недовольные покупатели, ворча, стоят в длинной очереди к кассе.