Логико-философский трактат | страница 28



5.41. Причина в том, что результаты истинностных действий над функциями истинности всегда тождественны, если они являются одной и той же функцией истинности элементарных суждений.

5.42. Совершенно очевидно, что ∨, ⊃ и т. д. не являются отношениями в том смысле, в каком являются ими правое, левое и т. п.

Взаимоопределяемости «элементарных логических знаков» Фреге и Рассела достаточно, чтобы показать, что они вовсе не элементарны и не выступают знаками отношений.

И очевидно, что «⊃», определяемое посредством «~» и «∨», тождественно тому, которое в сочетании с «~» определяет «∨»; и что второе «∨» тождественно первому; и т. д.

5.43. На первый взгляд кажется маловероятным, что из факта p должно следовать бесконечное множество других, а именно ~~p, ~~~~p и т. д. И не менее удивительно, что бесконечное число суждений логики (математики) следует из полудюжины «основных законов».

Но на самом деле все суждения логики говорят одно и то же – собственно, ничего.

5.44. Функции истинности нематериальны.

К примеру, утверждение может возникнуть из двойного отрицания: в таком случае можно ли заключить, что в известном отношении отрицание содержится в утверждении? Разве «~~p» отрицает ~p, разве оно подтверждает p или делает и то и другое?

Суждение «~~p» не трактует отрицание как объект; с другой стороны, возможность отрицания всегда присутствует в утверждении.

И если есть объект «~», отсюда следует, что «~~p» сообщает нечто отличное от «p», поскольку одно суждение будет об ~, а другое – нет.

5.441. Это исчезновение очевидных логических констант также проявляется в случае «~ (Ǝx) × ~fx», где говорится то же, что в выражении «(x) × fx», и в случае «(Ǝx) × fx × x = a», тождественном «fa».

5.442. Если дано суждение, тогда даны и результаты всех истинностных действий, опирающихся на это суждение.

5.45. Если бы существовали элементарные логические знаки, тогда любую логику, не способную показать отчетливо, как они расположены относительно друг друга, и оправдать их существование, следовало бы признать некорректной. Порождение логики из ее элементарных знаков должно быть очевидным.

5.451. Если в логике имеются элементарные идеи, они должны быть независимы друг от друга. Если элементарная идея вводится, она должна вводиться во все комбинации, в которых может встречаться. Поэтому она не может вводиться сначала в одну комбинацию, а затем в другую.

Например, после внедрения отрицания мы должны понимать его в суждениях «~p» и в суждениях «~ (p ∨ q)», «(Ǝx) × ~fx» и т. д. Мы не можем ввести его сначала в один разряд выражений, а затем в другой, поскольку иначе возникнут сомнения в том, одинаково ли его значение для обоих классов, и не будет никакой причины комбинировать знаки сходным образом в обоих классах.