Параллельное программирование на С++ в действии. Практика разработки многопоточных программ | страница 14
Кроме того, прирост производительности может оказаться меньше ожидаемого: с запуском потоков связаны неустранимые накладные расходы, потому что ОС должна выделить ресурсы ядра и память для стека и сообщить о новом потоке планировщику, а на все это требуется время. Если задача, исполняемая в отдельном потоке, завершается быстро, то может оказаться, что в общем времени ее работы доминируют именно накладные расходы на запуск потока, поэтому производительность приложения в целом может оказаться хуже, чем если бы задача исполнялась в уже имеющемся потоке.
Далее, потоки — это ограниченный ресурс. Если одновременно работает слишком много потоков, то ресурсы ОС истощаются, что может привести к замедлению работы всей системы. Более того, при чрезмерно большом количестве потоков может исчерпаться память или адресное пространство, выделенное процессу, так как каждому потоку необходим собственный стек. Особенно часто эта проблема возникает в 32-разрядных процессах с «плоской» структурой памяти, где на размер адресного пространства налагается ограничение 4 ГБ: если у каждого потока есть стек размером 1 МБ (типичное соглашение во многих системах), то 4096 потоков займут все адресное пространство, не оставив места для кода, статических данных и кучи. В 64-разрядных системах (и системах с большей разрядностью слова) такого ограничения на размер адресного пространства нет, но ресурсы все равно конечны: если запустить слишком много потоков, то рано или поздно возникнут проблемы. Для ограничения количества потоков можно воспользоваться пулами потоков (см. главу 9), но и это не панацея — у пулов есть и свои проблемы.
Если на серверной стороне клиент-серверного приложения создается по одному потоку для каждого соединения, то при небольшом количестве соединений все будет работать прекрасно, но когда нагрузка на сервер возрастает и ему приходится обрабатывать очень много соединений, такая техника быстро приведет к истощению системных ресурсов. В такой ситуации оптимальную производительность может дать обдуманное применение пулов потоков (см. главу 9).
Наконец, чем больше работает потоков, тем чаще операционная система должна выполнять контекстное переключение. На каждое такое переключение уходит время, которое можно было бы потратить на полезную работу, поэтому в какой-то момент добавление нового потока не увеличивает, а снижает общую производительность приложения. Поэтому, пытаясь достичь максимально возможной производительности системы, вы должны выбирать число потоков с учетом располагаемого аппаратного параллелизма (или его отсутствия).