Параллельное программирование на С++ в действии. Практика разработки многопоточных программ | страница 13



. Хотя эта процедура и представляется простой, на деле все может сильно усложниться из-за наличия многочисленных зависимостей между разными частями. Разбиение можно формулировать как в терминах обработки: один поток выполняет одну часть обработки, другой — другую, так и в терминах данных: каждый поток выполняет одну и ту же операцию, но с разными данными. Последний вариант называется распараллеливание по данным.

Алгоритмы, легко поддающиеся такому распараллеливанию, часто называют естественно параллельными (embarrassingly parallel, naturally parallel, conveniently concurrent.). Они очень хорошо масштабируются — если число располагаемых аппаратных потоков увеличивается, то и степень параллелизма алгоритма возрастает. Такой алгоритм — идеальная иллюстрации пословицы «берись дружно, не будет грузно». Те части алгоритма, которые не являются естественно параллельными, можно разбить на фиксированное (и потому не масштабируемое) число параллельных задач. Техника распределения задач по потокам рассматривается в главе 8.

Второй способ применения распараллеливания для повышения производительности — воспользоваться имеющимся параллелизмом для решения более крупных задач, например, обрабатывать не один файл за раз, а сразу два, десять или двадцать. Это по сути дела пример распараллеливания но данным, так как одна и та же операция производится над несколькими наборами данных одновременно, но акцент немного иной. Для обработки одной порции данных требуется столько же времени, сколько и раньше, но за фиксированное время можно обработать больше данных. Очевидно, что и у этого подхода есть ограничения, и не во всех случаях он дает выигрыш, но достигаемое повышение производительности иногда открывает новые возможности. Например, если разные области изображения можно обрабатывать параллельно, то можно будет обработать видео более высокого разрешения.

1.2.3. Когда параллелизм вреден?

Понимать, когда параллелизмом пользоваться не следует, не менее важно. Принцип простой: единственная причина не использовать параллелизм — ситуация, когда затраты перевешивают выигрыш. Часто параллельная программа сложнее для понимания, поэтому для написания и сопровождения многопоточного кода требуются дополнительные интеллектуальные усилия, а, стало быть, возрастает и количество ошибок. Если потенциальный прирост производительности недостаточно велик или достигаемое разделение обязанностей не настолько очевидно, чтобы оправдать дополнительные затраты времени на разработку, отладку и сопровождение многопоточной программы, то не используйте параллелизм.