Система Диофанта | страница 4
— / >Куплю костюм с отливом. И в Гагры.../
= Слушай. Чё-то мне не верится, что за две с половиной тысячи лет никто не нашел такого способа.
— И мне не верится. Но, мы не специалисты, наверное профессиональный математик скажет «на такой-то странице такой-то работы Гаусса или скажем Эйлера есть упоминание о данной теме, в качестве курьеза[2]».
— Но мне кажется, что это тайный инструмент составителей задачников для школьников. Согласись, что составить задачу с заданными свойствами ничего не стоит.
= Тогда Нельке я скажу «назови мне два числа, и я тебе напишу квадратное уравнение, где корнями буду эти два числа». Так пожалуй еще круче. .... но придется признаваться как я это делаю.
— Да не проблема, расскажи и покажи. Но, во время демонстрации помни о коварных случаях например x>2 — 5x — 3 = 0.
= Ничего, выкручусь, по крайней мере поражу народ своим анализом корней, а затем скажу, что сегодня с отрицательными корнями не хочу возится.
= А, вот еще вопрос. Мы с тобой рассматривали уравнения типа x>2 + bx + c = 0, а если будет полное квадратное уравнение: ax>2 + bx + c = 0?
— Элементарно, Ватсон. Раздели полное уравнение на а, и получишь приведенное, а дальше ты знаешь.
= Но тогда получатся дробные коэффициенты.
— Мудрость состоит в том, что не стоит бараном упираться в любой принцип, ежели разделение дроби на сомножители составляет трудность, вспоминай о дискриминанте и прочих радостях стандартной формулы.
Но давай поиграемся с корнями 0.5 и 1.5
x>2 — [0.5 + 1.5]x + [0.5 • 1.5] = x>2 — 2x + 0.75 = 0
давай для удаления дроби, умножим на 100
100x>2 — 200x + 75 = 0
Т.е. по крайней мере составлять уравнение по любым корням ты сможешь, и разбитое сердце для Нелли обеспеченно.
= Я тоже хочу попробовать.
— Ну, давай, давай что-нибудь не обычное, пусть будет корень из тринадцати, итак корни КУ 1 + √13 и 1 — √13.
= Крибле крабле бумс: x>2 — 2x — 12 = 0
= «Айнун цванцих фирун зихцих» или как говорили древние финики «Повторение мать мучения»
— Финикийцы?!
= Финики — веселее. Давай я повторю все что понял:
--------------------------------------
1. Посмотреть на знаки
--------------------
— + оба корня положительны
— — один корень отрицателен, но положительный больше*
+ — один корень положителен, но отрицательный больше*
+ + оба корня отрицательны
* больше при сравнении абсолютных величин корней.
--------------------
2. Если M меньше S значит абсолютная величина хотя бы одного корня больше нуля, но меньше единицы.