Пятьдесят занимательных вероятностных задач с решениями | страница 4



12. Quo Vadis?[1]

Двое незнакомых людей, договорившись о том, как узнать друг друга, должны встретиться в определенный день и час в Нью-Йорке, городе, которого они оба не знают. Однако они забыли назначить место встречи. Куда им следует направиться, если они все же попытаются встретиться?[2]

13. Дилемма узника

Три узника, A, B и C, одинаково хорошего поведения ходатайствовали об освобождении на поруки. Администрация решила освободить двух из трех, что стало известно узникам, которые, однако, не знают, кто именно эти двое. У заключенного A в охране есть друг, который знает, кого отпустят на свободу, но A считает неэтичным осведомиться у охранника, будет ли он, A, освобожден. Все же A хочет спросить об имени одного узника, отличного от самого A, который будет отпущен на свободу. Прежде чем спрашивать, он оценивает вероятность своего освобождения как 2/3. A думает, что если охранник скажет «B будет освобожден», то его шансы уменьшатся до ½, так как в этом случае будут освобождены либо A и B, либо B и C. Однако A ошибается в своих расчетах. Объясните это.

14. Выбор купонов

Купоны в коробках занумерованы цифрами от 1 до 5, и для того, чтобы выиграть, надо набрать полный комплект из пяти купонов с разными номерами. Если из коробки вынимается один купон, то сколько коробок в среднем надо испытать, чтобы получить полный комплект?

15. В театре

Восемь юношей и семь девушек независимо приобрели по одному билету в одном и том же театральном ряду, насчитывающем 15 мест. Какое среднее число смежных мест занимают в этом ряду пары?

16. Выйдет ли второй в финал?

В теннисном турнире участвуют 8 игроков. Номер, вытаскиваемый игроком наудачу, определяет его положение в турнирной лестнице (рис. 1).

Рис. 1. Турнирная лестница для 8 участников.

Предположим, что лучший игрок всегда побеждает второго по мастерству, а тот в свою очередь побеждает всех остальных. Проигрывающий в финале занимает второе место. Какова вероятность того, что это место займет второй по мастерству игрок?

17. Рыцари-близнецы

(а). Король Артур проводит рыцарский турнир, в котором, так же как и в теннисе, порядок состязания определяется жребием (см. задачу 16). Среди восьми рыцарей, одинаково искусных в ратном деле, два близнеца. Какова вероятность того, что они встретятся в поединке?

(б). Каков ответ в случае 2>n рыцарей?

18. Равновесие при бросании монет

При бросании 100 монет какова вероятность выпадения ровно 50 гербов?

19. Задача Сэмуэля Пепайса