Пятьдесят занимательных вероятностных задач с решениями | страница 34



Подготавливая эти пояснения об игре в казино для настоящей книги, Сэвидж сознательно опустил некоторые математические тонкости, касающиеся случая равенств в неравенствах для вероятностей.

«Золотой рай»

В «Золотом раю» можно играть в любую безобидную игру, если только игрок располагает достаточным начальным капиталом. Игрок, входящий в «Золотой рай» с x долларами и желающий получить доход в y долларов, может достигнуть своей цели с вероятностью x/(x + y), поставив все свое достояние x на единственный шанс выиграть y долларов с вероятностью x/(x + y), что является, очевидно, безобидной игрой. Как известно, никакая стратегия не дает большей вероятности выигрыша, и вероятность выигрыша максимальна тогда и только тогда, когда играющий заведомо либо проигрывает x либо выигрывает y долларов.

«Меньший рай»

«Меньший рай» походит на «Золотой рай», но с той существенной разницей, что, покидая игорный зал, игрок должен уплатить налог размером t (0 < t < 1) с любой положительной суммы, которую он приобрел во время игры. Поэтому для играющего не труднее и не легче выиграть y с начальным капиталом в x долларов, чем игроку в «Золотом раю» выиграть y / (1 − t) долларов. Наибольшая вероятность, с которой он может достигнуть цели, равна поэтому

P>max = [(1 − t) · x] / [(1 − t) · x + y].     (1)

«Потерянный рай»

Здесь крупье собирает налог размером t от положительного дохода, если он есть, после каждой сыгранной партии. В этом случае игрок, очевидно, находится не в лучших условиях, чем его собрат в «Меньшем раю». В частности, (1) есть верхняя граница для вероятности выиграть y долларов с начальным капиталом x в «Потерянном раю». Эта вероятность может быть достигнута при ставке всего капитала в одной партии, как и прежде. Однако указанная вероятность не может быть получена ни при какой стратегии, для которой вероятность выигрыша любой положительной суммы, меньшей чем y (после выплаты налогов), положительна. Чтобы убедиться в этом, заметим, что игрок в «Меньшем раю» может имитировать любую стратегию игрока из «Потерянного рая», откладывая после каждой партии ту сумму, которую отбирает крупье от игрока из «Потерянного рая». Таким образом, первый игрок может иметь больший ожидаемый доход, чем второй игрок при любой стратегии, в которой вероятность выигрыша любой положительной суммы, меньшей y, положительна.

«Красное и черное»

В «Красном и черном» игрок может поставить любую сумму в игре с вероятностью