Пятьдесят занимательных вероятностных задач с решениями | страница 16



Аналогично условные вероятности других очков «пойнт» равны

Для определения безусловной вероятности выигрыша при данной сумме «пойнт» надо умножить вероятность получения «пойнт» при первом бросании на условную вероятность выигрыша. Суммируя эти величины, находим вероятность выигрыша для суммы «пойнт»:

Прибавляя к этому значению вероятность выигрыша при первом бросании 8/36 ≈ 0.22222, видим, что полная вероятность выигрыша игрока равна 0.49293. Его средний ущерб равен 0.50707 − 0.49293 = 0.01414 или 1.41 %. Автор считает, что это наиболее справедливая игра без стратегии, которая практикуется в игорных домах.

Некоторым читателем может показаться слишком искусственным подход, связанный с условными вероятностями. Мы дадим и другой метод, связанный с суммированием бесконечных рядов.

Пусть P обозначает вероятность получить «пойнт», а R — вероятность появления суммы очков, при которой игра продолжается (R = 1 − P − 1/6). Здесь 1/6, конечно, имеет смысл вероятности появления 7. Игрок выигрывает при r + 1 бросании, если игра продолжалась r шагов, и при r + 1 шаге появился «пойнт». Вероятность этого события равна R>rP, r = 0, 1, 2, ... Суммируя по r, получаем

P + RP + R²P + ... = P(1 + R + R² + ...)

или

вероятность получить «пойнт» = P/(1 − R).

Например, если «пойнт» равен 4,

что согласуется с полученным ранее.

Сам автор решал сначала эту задачу с помощью суммирования бесконечного ряда и был обрадован, когда несколько дней спустя обнаружил указанный здесь более простой подход.

10. Обсуждение эксперимента по психологии азартных игроков

Трудно сказать, какой предварительный взнос вы сочтете подходящим для себя. Хотя математическое ожидание выигрыша в первой игре равно пяти долларам, вы можете не захотеть платить взнос, близкий к 5 долларам, за право игры. Потеря 3 или 4 долларов может весьма много значить для игроков. Вы можете, например, предложить взнос, в 75 центов.

Кажется естественным, однако, что взнос для участия во второй игре должен быть по крайней мере таким же, как и для их первой игры. Цвет всегда может быть выбран случайным бросанием монеты, что дает 50 % шансов правильного решения и математическое ожидание выигрыша, равное 5 долларам. Кроме того, если вы располагаете информацией о склонностях вашего друга, то она может быть использована для увеличения вероятности выигрыша.

Большинство людей склонно скорее к первой игре, так как условия второй представляются им менее определенными. Автор обязан этой задачей Г. Райфа; последний сообщил ему, что идея задачи принадлежит Д. Элсбергу.