Пятьдесят занимательных вероятностных задач с решениями | страница 15
Несколько другим путем решения этой задачи является применение биномиальных коэффициентов, которые равны числу различных способов размещений a элементов одного рода и b элементов другого в строку. Например, 3 буквы a и 2 буквы b могут быть записаны подряд 10 различными способами, что нетрудно проверить на пальцах, начиная с aaabb и кончая bbaaa. Биномиальный коэффициент записывается в этом случае как
В более общей ситуации, когда имеется n предметов, из которых a одного рода, и n − a — другого, число способов их упорядочения дается формулой
В нашей задаче число способов выбрать 13 карт из полной колоды равно
Тринадцать пик можно получить
способом, так как 0! = 1. Учитывая, что имеется четыре масти, получим окончательно вероятность в виде 4×13!·39!/52!, как уже было установлено ранее.
Биномиальные коэффициенты обсуждаются в в цитированной выше книге Мостеллера, Рурке и Томаса «Вероятность» на стр. 33–39.
9. «Крэпс»
Эта игра, как мы скоро увидим, удивительно близка к безобидной, хотя все же и невыгодна для игрока.
Подсчитаем сначала вероятности для полного числа очков на двух костях. Сделаем кости различимыми, окрасив их, скажем, в красный и зеленый цвета. Тогда подбрасывание 2-х костей имеет 6×6 = 36 равновероятных исходов, которые приведены ниже в таблице.
Зеленая кость | |||||||
1 | 2 | 3 | 4 | 5 | 6 | ||
Красная кость | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | |
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
4 | 5 | 6 | 7 | 8 | 9 | 10 | |
5 | 6 | 7 | 8 | 9 | 10 | 11 | |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
В клетках указана соответствующая сумма очков.
Простым подсчетом мы находим распределение вероятностей суммы очков при одновременном подбрасывании двух костей.
Сумма | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
P(суммы) | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36 |
Здесь P обозначает вероятность появления соответствующей суммы очков.
Вероятность выигрыша после первого бросания равна
Вероятность проигрыша после первого бросания равна
Для дальнейших бросаний нам надо знать вероятность того, что выпадет «пойнт». Так как нам важны лишь очки, отвечающие «пойнт» или 7, то можно вычислять условные вероятности выбросить «пойнт» при условии, что при первом бросании появился «пойнт». Иногда этот метод называется методом «приведенного выборочного пространства», так как хотя в принципе возможны все варианты от 2 до 12 очков, мы рассматриваем лишь «пойнт» и 7.
Например, если выпало 4 очка, то существует 3 возможных способа их появления и 6 способов для появления 7 очков. Таким образом, условная вероятность выбросить «пойнт» равна 3/(3 + 6) = 3/9.