Шанс есть! Наука удачи, случайности и вероятности | страница 75



.


Многие страшатся непонятных совпадений, которые вдруг проступают в случайном узоре повседневных событий. Но всякий знает, что случайность – это сама суть беспорядка, где нет осмысленного рисунка и четких закономерностей. А потому в таких совпадениях ничего особенного нет.

Однако это не так. Вглядитесь как следует в туман случайности, и вы, быть может, разглядите в нем регулярность и универсальные истины, хотя все это мы чаще склонны приписывать глубинному космическому порядку. В чем же тут дело? А вот в чем. То, что мы называем случайностью, обычно является просто версией реальной случайности, только на цепи и в наморднике. Принужденная действовать в рамках определенных пределов, заданных ограничениями того мира, где мы живем, случайность отбрасывает небольшую долю своей хваленой математической беззаконности. Доля эта невелика, и эффект обычно крайне мал. Но иногда он становится ясным как день и даже шокирующим – если вы знаете, куда смотреть.

Возьмем лотерейные номера. Беглый взгляд на комбинации, выпавшие в прошлом, не выявляет ничего, кроме случайности.

Но если всмотреться, начнут проступать мельчайшие крупицы упорядоченности: там – пара последовательных чисел, тут – череда простых чисел.

Но лотерею никто не «подкручивает»: регулярно проводится статистическая проверка, чтобы исключить возможность мошенничества со стороны организаторов. Что же происходит? Перед нами пример реванша случайности. Она мстит за то, что ее обуздали. По-настоящему случайные числа не знают границ, а вот лотерейные номера лишены столь безбрежной свободы. Их царство простирается лишь от 1 до 49. А когда случайность помещают в столь тесные рамки, допускающие возможность лишь некоторых исходов, она утрачивает часть своей абсолютной беззаконности и непредсказуемости. Она вынуждена подчиниться теории вероятностей, которая описывает поведение бесконечно случайного в конечном мире.

Так, в лотерее с 49 шарами, согласно теории вероятностей, наборы с «аномальной» (как нам кажется) комбинацией номеров будут появляться примерно в половине всех розыгрышей. Когда случайности приходится распределять свои сюрпризы по ограниченному количеству результатов, следует ожидать неожиданного.

Возьмите произвольный уикенд футбольного сезона в любом году и в любой стране – скажем, 14–15 августа 2004 года в английской премьер-лиге. В эти дни 20 команд сражаются друг с другом в 10 матчах. В половине матчей хотя бы у двух игроков, вышедших на поле, будет совпадать день рождения (без учета года). Странное совпадение? Вовсе нет. Теория вероятностей демонстрирует, что когда случайность вынуждена разбросать дни рождения 22 игроков, участвующих в каждом матче (без учета замен), среди 365 дней года (для простоты не будем рассматривать високосные годы), шансы на то, что хотя бы два игрока, участвующие в матче, отмечают день рождения одновременно, составят приблизительно 50:50. Иными словами, в примерно половине из 10 матчей, сыгранных в этот уик-энд, по меньшей мере у двух игроков должен совпадать день рождения. И что же? В действительности именно это и наблюдается.