Шанс есть! Наука удачи, случайности и вероятности | страница 74
Нет. Вероятность выпадения орла и решки при следующем броске одинакова. То же самое касается и всех дальнейших бросков. В очень длинной последовательности бросков общая доля орлов и решек должна быть очень близка к 50 % – к «распределению поровну». Можно ожидать, что на каждые два миллиона бросков в среднем придется по миллиону орлов и по миллиону решек.
Хотя 17 очень отличается от нуля, 1 000 017 ближе к миллиону, чем к нулю: их отношение составляет 1,000017, число очень близкое к единице. Решки не «подтягиваются» к орлам: последующий миллион бросков затмевает немногочисленные первые броски, и чем больше вы будете подкидывать монетку, тем менее значительной будет становиться эта изначальная разница между количеством выпавших орлов и решек.
Схожая картина – с тем, насколько часто выпадают те или иные номера в Британской национальной лотерее. В течение какого-то периода номер 13 выпадал сравнительно редко, тем самым укрепляя суеверных игроков в убеждении, будто 13 – несчастливое число. Поэтому некоторые ожидали, что в будущем 13 станет выпадать чаще. Другие же полагали, что это число и дальше будет подтверждать свою «черную» репутацию. Математические законы вероятностей, подкрепленные бесчисленными экспериментами, говорят о том, что оба лагеря заблуждаются. В будущем у каждого номера по-прежнему одни и те же шансы на то, чтобы оказаться выбранным. Лототрон обращается со всеми шарами одинаково и вообще не «знает», какие на них номера.
Парадоксальным образом это не значит, что в действительности все номера будут выпадать с совершенно равной частотой. Абсолютное равенство здесь крайне маловероятно. Следует ожидать, что мы увидим некие колебания вокруг среднего значения. В этом раскладе будут и номера-победители, и номера-аутсайдеры.
Математики даже предсказывают размах и вероятность таких флуктуаций. Однако ученые не в состоянии дать прогноз, какие номера окажутся в числе победителей, а какие – в числе проигравших. Заранее можно лишь сказать, что победителем и проигравшим может оказаться практически любой номер, и вероятности здесь практически равны для всех номеров.
Должно ли это произойти?
Рассматривать абстрактные понятия случайного очень приятно, однако наша повседневная жизнь блестяще умеет налагать ограничения на то, что должно бы считаться случайными событиями. Скрестите случайность с реальным миром, и вы получите причудливые и необычные математические следствия, имеющие глубинную связь с явлениями природы. Порой даже кажется, что случайность при этом словно исчезает, говорит