По следам бесконечности | страница 43



Но главное даже не в этом. Дело в том, что одним из основных, фундаментальных положений логики является так называемый закон исключенного третьего, основанный на многовековом практическом опыте человечества. Коротко этот закон можно выразить так: или «да» — или «нет». Другими словами, любое утверждение либо истинно, либо ложно — третьего быть не может, не может человек одновременно и бриться и не бриться.

Закон исключенного третьего можно сформулировать и в несколько иной более строгой форме: если об одном и том же предмете высказывается некоторое утверждение и утверждение, его отрицающее, то если одно из них истин по, то другое обязательно ложно.

В истории с брадобреем мы еще как-то можем найти выход из положения: брадобрея, удовлетворяющего предъявленным условиям, просто не может существовать, и закон исключенного третьего остается неприкосновенным. А вот в общем случае бесконечных множеств все обстоит значительно сложнее. Здесь уже далеко не ясно, существует или не существует объект с заданными свойствами; не можем мы, очевидно, поручиться и за справедливость закона исключенного третьего.

В области бесконечного отказывает наш опыт, а следовательно, нет и никакой гарантии того, что на эту область можно автоматически переносить законы нашей обычной логики.

События, развернувшиеся после того, как стал известен парадокс Рассела — Цермелло, Жорж Адамар назвал землетрясением в математике. И очень многие исследователи сразу же отшатнулись от теории множеств, а вместе с ней снова от операций с бесконечностью.

Даже немецкий математик Рихард Дедекинд (1831–1916), который начал работать в области теории множеств еще до Кантора и одновременно с Кантором развивал основные идеи в этой области, теперь пытался в своих работах обходиться без теоретико-множественных представлений.

А уже известный нам Давид Гильберт предпочитал воздерживаться от утверждений, что прямые и плоскости есть множества точек.

— Опубликование парадокса Рассела — Цермелло, — говорил он, — оказало на математический мир прямо-таки катастрофическое действие.

Но, как совершенно справедливо заметил, правда, по несколько иному поводу, советский ученый академик А. Н. Колмогоров, проблема не перестает быть проблемой от того, что о ней стараются не говорить.

Сам Кантор поставил устранение парадоксов главной своей задачей. И в последние годы жизни, по существу, только и занимался этой проблемой. Но решить ее так ему и не удалось.