По следам бесконечности | страница 42



Некоторые множества содержат сами себя в качестве одного из элементов. Например, множество всех абстрактных понятий само является абстрактным понятием и потому тоже входит в это множество.

Вполне правомерно, с точки зрения канторовской теории множеств, рассматривать и множество всех существующих вообще множеств или множество всех множеств, обладающих определенным свойством.

Вот и составим множество всех множеств, которые не являются своим собственным элементом, и назовем его множеством А. Но поскольку мы собрали все множества, обладающие таким свойством, среди них должно быть и само множество А. Следовательно, А принадлежит к числу множеств, которые являются своим собственным элементом. Но ведь мы составили множество А только из таких множеств, которые не входят сами в себя.

Несколько короче эту странную ситуацию можно выразить в следующей парадоксальной фразе: множество всех множеств, не являющихся своим собственным элементом, является своим элементом тогда и только тогда, когда оно не является своим элементом…

Тот же парадокс можно изложить и в более житейской форме. Одному брадобрею разрешили брить тех и только тех людей, которые не бреются сами. Таким образом, множество всех людей на Земле, казалось бы, делится на две категории, два различных подмножества — подмножество тех, кто бреется сам, и тех, кто сам не бреется.

Но к какому из двух подмножеств отнести самого парикмахера?

Если он сам себя брить не будет, то попадет в число тех, кого он должен брить. Но если он сам себя побреет, то окажется среди тех людей, которых он брить не должен.

Некоторые парадоксы теории множеств были известны и до этого. Два из них обнаружил сам Кантор, когда после продолжительной болезни, вызванной нервным переутомлением, слова вернулся к математическим исследованиям.

Но парадокс Рассела — Цермелло произвел неизмеримо более сильное впечатление. Ведь он затрагивал не только теорию множеств и даже не только математику, но и логику вообще, — вспомним историю с брадобреем.

Возможно, все дело в том, что нельзя рассматривать слишком обширные множества — такие, как множество всех множеств, обладающих определенными свойствами.

Но если запретить множество всех множеств, мы придем к противоречию с канторовским определением множества.

«Чтобы вообще иметь теорию множеств, — пишет известный математик С. К. Клини в своей книге „Введение в математику“, — надо иметь теоремы, справедливые для всех множеств, а все множества, по канторовскому определению, образуют множество. Если это не так, то мы должны указать, каким определением множества мы будем пользоваться взамен…»