2a. Пространство. Время. Движение | страница 42



но со­вершенно безразлично, какими словами это называть, просто-напросто это «скоропись». Наше первое утверждение, что

L(x+y)=L(x)+L(y), (25.3)

следует из соотношений а(х+у)=ах+ау, d(x+y)/dt=dx/dt+-dy/dt и т. д.

Легко доказать, что для постоянного а

L(ax)=aL(x). (25.4)

[Соотношения (25.3) и (25.4) тесно связаны одно с другим, потому что, подставив в (25.3) х+х, мы получим (25.4) для част­ного значения а=2 и т. д.]

Решая более сложные задачи, можно получить L, в котором содержится больше членов и более высокие производные. Обыч­но первым делом интересуются, справедливы ли соотношения (25.3) и (25.4). Если они выполняются, то задачу называют линейной. В этой главе мы изучим некоторые свойства систем, следующие только из того факта, что система линейная. Это поможет нам понять общность некоторых свойств изученных ранее частных систем.

Давайте изучим некоторые свойства линейных дифферен­циальных уравнений, причем полезно помнить о хорошо зна­комом нам частном уравнении (25.1). Первое интересное свой­ство: предположим, что мы решаем дифференциальное уравне­ние для переходных движений: свободных колебаний без дейст­вия внешних сил. Нам предстоит решить уравнение

L(x)=0. (25.5)

Предположим, что мы как-то исхитрились одолеть это уравне­ние и нашли его частное решение х>1. Это значит, что нам из­вестна функция x>1, для которой L(x>1)=0. После этого можно за­метить, что ax>1— тоже решение нашего уравнения; можно умножить частное решение уравнения на любую постоянную и получить новое решение. Иначе говоря, если какое-либо ре­шение позволяет частице продвинуться на определенное рас­стояние, то она может совершить и более длинный рейс. Дока­зательство: L(ax>1)=aL(x>1)=a·0=0.

Предположим теперь, что нам удалось все-таки найти не одно частное решение x>1, но и второе х>2(напомним, что когда мы в поисках переходного решения подставляли x=exp(iat), то мы нашли два значения a, т. е. два решения: x>1и х>2). Пока­жем теперь, что комбинация x>1+x>2тоже решение. Иными словами, если положить x=x>1+x>2, то х — это опять решение уравнения. Почему? Потому что если L(x>1)=0 и L(x>2)=0, то L(x>t+x>2)=L(x>1)+L(x>2)=0+0=0. Таким образом, мы вправе складывать отдельные решения, описывающие движения ли­нейной системы.

Продолжая в том же духе, мы можем сложить шесть первых и два вторых решения; ведь если x>1есть решение, то ax>1 — тоже решение. Другими словами, любая сумма двух решений, на­пример ax>1+bx>2, удовлетворяет уравнению. Если нам посча­стливится найти три решения, то мы увидим, что любая комби­нация трех решений снова удовлетворяет уравнению, и т. д. Поток таких решений можно ограничить