2a. Пространство. Время. Движение | страница 30



Теперь они более образованы и имеют уже цепи перемен­ного тока, но хотят, чтобы уравнения были те же самые. Вот они и пишут V=ZI, и единственная разница в том, что теперь со­противление заменено более сложной вещью: комплексным чис­лом. Они настаивают на том, что они не могут использовать принятого во всем мире обозначения для мнимой единицы и пишут j; поистине удивительно, что они не требуют, чтобы вме­сто буквы Z писали букву R! (Много волнений доставляют им разговоры о плотности тока; ее они тоже обозначают буквой j. Сложности науки во многом связаны с трудностями в обозна­чениях, единицах и прочих выдумках человека, о чем сама при­рода и не подозревает.)

§ 4. Резонанс в природе

Хотя мы детально разобрали вопрос о резонансе в электри­ческих цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеблется» и так же часто наступает резо­нанс. Об этом уже говорилось в одной из предыдущих глав; приведем теперь некоторые примеры. Зайдите в библиотеку, возьмите с полки несколько книг, полистайте их; вы обнаружите кривые, похожие на кривые фиг. 23.2, и уравнения, по­хожие на уравнения, приведенные в этой главе. Много ли най­дется таких книг? Для убедительности возьмем всего пять-шесть книг, и они обеспечат вас полным набором примеров резонансов.

Первые два относятся к механике. Самый первый грандио­зен — речь идет о колебаниях атмосферы. Если бы атмосфера, ко­торая, по нашим представлениям, шарообразна и обволакивает нашу Землю равномерно со всех сторон, под влиянием Луны вы­тянулась бы в одну сторону, то атмосфера приняла бы форму вы­тянутой дыни. Если предоставить атмосферу, имеющую форму дыни, самой себе, то возникнут колебания. Так получается осцил­лятор. Этими колебаниями управляет Луна, которая вращается вокруг Земли. Чтобы понять, как это происходит, представим се­бе, что Луна стоит неподвижно на каком-то расстоянии от Земли, а Земля вращается вокруг своей оси. Поэтому проекция силы, скажем, на ось х имеет периодическую составляющую. Отклик атмосферы на приливно-отливные толчки Луны будет обычным откликом осциллятора на периодическую силу. Кривая b на фиг. 23.6 изображает ожидаемый отклик атмосферы (кривая а приведена на заимствованном нами рисунке из книги Мунка и Мак-Дональда по другому поводу и нас не касается). Может показаться странным, что удалось начертить эту кривую: ведь Земля вращается с постоянной скоростью, и поэтому мож­но получить только одну точку на кривой — точку, приблизи­тельно соответствующую периоду 12 — 12,7