2a. Пространство. Время. Движение | страница 19



+3x>2=-2, для решения которых потребуются новые числа». В том-то и дело, что, кроме действительных чисел, достаточно изобрести только одно число — квадратный корень из -1, после этого можно решить любое алгебраическое уравнение! Эту удивительную вещь должны доказывать уже математики. Дока­зательство очень красиво, очень интересно, но далеко не само­очевидно. Действительно, казалось бы, естественнее всего ожи­дать, что по мере продвижения в дебри алгебраических уравнений придется изобретать снова, снова и снова. Но самое чудесное, что больше ничего не надо изобретать. Это последнее изобре­тение. Изобретя комплексные числа, мы установим правила, по которым с этими числами надо обращаться, и больше ничего изобретать не будем. Мы научимся возводить комплексные числа в комплексную степень и выражать решение любого алгебраи­ческого уравнения в виде конечной комбинации уже известных нам символов. К новым числам это не приведет. Например, квадратный корень из i, или i>i— опять те же комплексные числа. Сейчас мы рассмотрим это подробнее.

Мы уже знаем, как надо складывать и умножать комплекс­ные числа; сумма двух комплексных чисел (р+iq)+(r+is) — это число (p+r)+i(q+s). Но вот возведение комплексных чисел в комплексную степень — уже задача потруднее. Однако она оказывается не труднее задачи о возведении в комплексную сте­пень действительных чисел. Посмотрим поэтому, как возводит­ся в комплексную степень число 10, не в иррациональную, а комплексную; нам надо знать число 10>(>r>+>is>). Правила (22.1) и (22.2) несколько упрощают задачу

10>(>r>+>is>)=10>r10>is>(22,5)

Мы знаем, как вычислить 10>r, перемножить числа мы тоже умеем, не умеем только вычислить 10>is. Предположим, что это комплексное число x+iy. Задача: дано s, найти х и у. Если

10>is=x+ iy,

то должно быть верным и комплексно сопряженное уравнение

l0>->is=x-iy,

(Некоторые вещи можно получить и без вычислений, надо про­сто использовать правила.) Перемножая эти равенства, можно получить еще один интересный результат

10>is10>->is=10>0=1=(x+iy)(x-iy)=x>2+y>2(22.6)

Если мы каким-то образом найдем х, то определить у будет очень легко.

Однако как все-таки возвести 10 в мнимую степень? Где искать помощи? Правила нам уже не помогут, но утешает вот что: если удастся возвести 10 в какую-нибудь одну мнимую степень, то ничего не стоит возвести 10 уже в любую степень. Если из­вестно 10>is для одного значения s, то вычисление в случае вдвое большего s сводится к возведению в квадрат и т. д. Но как же возвести 10 в хотя бы одну мнимую степень? Для этого сделаем дополнительное предположение; его, конечно, нельзя ставить в один ряд с правилами (22.1) и (22.2), но оно приведет к разумным результатам и позволит нам шагнуть далеко впе­ред. Предположим, что «закон» 10