2a. Пространство. Время. Движение | страница 15



Теперь посмотрим, как составляют таблицу логарифмов. Работа начинается с последовательных извлечений квадрат­ного корня из 10. Результат можно увидеть в табл. 22.1. Показатели степеней записаны в ее первом столбце, а числа 10>S— в третьем. Ясно, что 10>1=10. Возвести 10 в половинную степень легко — это квадратный корень из 10, а как извлекать квадратный корень из любого числа, знает каждый. Итак, мы нашли первый квадратный корень; он равен 3,16228. Что это дает? Кое-что дает.

Таблица 22.1 · последовательные извлечения

КВАДРАТНОГО КОРНЯ ИЗ 10



Мы уже можем сказать, чему равно 10>0,5, и знаем по крайней мере один логарифм. Логарифм числа 3,16228 очень близок к 0,50000. Однако нужно еще приложить неболь­шие усилия: нам нужна более подробная таблица. Извлечем еще один квадратный корень и найдем 10>1/4,что равно 1,77828. Теперь мы знаем еще один логарифм: 1,250— это логарифм числа 17,78; кроме того, мы можем сказать, чему равно 10>0,75: ведь это 10>(0>,>5+0>,>25), т. е. произведение второго и третьего чисел из третьего столбца табл. 22.1. Если сделать первый столбец таблицы достаточно длинным, то таблица будет содержать поч­ти все числа; перемножая числа из третьего столбца, мы полу­чаем 10 почти в любой степени. Такова основная идея таблиц. В нашей таблице содержится десять последовательных корней из 10; основной труд по составлению таблицы вложен в вычис­ления этих корней.

Почему же мы не продолжаем повышать точность таблиц дальше? Потому что мы кое-что уже подметили. Возведя 10 в очень малую степень, мы получаем единицу с малой добавкой. Это, конечно, происходит потому, что если возвести, например, 10>1>/>1000 в 1000-ю степень, то мы снова получим 10; ясно, что `0>1/>1000 не может быть большим числом: оно очень близко к еди­нице. Более того, малые добавки к единице ведут себя так, буд­то их каждый раз делят на 2; поглядите-ка на таблицу повни­мательнее: 1815 переходит в 903, потом в 450, 225 и т. д. Таким образом, если вычислить еще один, одиннадцатый, квадратный корень, он с большой точностью будет равен 1,00112, и этот результат мы угадали еще до вычисления. Можно ли сказать, какова будет добавка к единице, если возвести 10 в степень D/1024, когда D стремится к нулю? Можно. Добавка будет приблизительно равна 0,0022511D. Конечно, не в точности 0,0022511 D; чтобы вычислить эту добавку поточнее, делают та­кой трюк: вычитают из 10>Sединицу и делят разность на показа­тель степени s.