2a. Пространство. Время. Движение | страница 11



операции. Их можно определить так. Предположим, что нам заданы а и с; как найти b, удовлетворяющее уравнениям а+b=с, ab=c, b>a=с? Если а+b=с, то b определяется при помощи вычитания: b=с-а. Столь же проста операция деления: если ab=c, то b=с/а; это решение уравнения ab=c «задом наперед». Если вам встретится степень: b>a=с, то надо запомнить, что b называется корнем а-й степени из с. Например, на вопрос: «Какое число, будучи возведенным в куб, дает 8?» — следует отвечать: «Кубический ко­рень из 8, т. е. 2». Обратите внимание, что, когда дело доходит до степени, появляются две обратные операции. Действительно, ведь раз а>bи b>аразличные числа, то можно задать и такой вопрос: «В какую степень надо возвести 2, чтобы получить 8?» В этом случае приходится брать логарифм. Если а>b=с, то b=log>ac. He надо пугаться громоздкой записи числа b в этом слу­чае; находить его так же просто, как и результаты других обрат­ных операций. Хотя логарифм «проходят» гораздо позже корня, это такая же простая вещь: просто-напросто это разного сорта решения алгебраических уравнений. Выпишем вместе прямые и обратные операции:



В чем же идея? Выписанные соотношения верны для целых чисел, потому что они выводятся из определений сложения, ум­ножения и возведения в степень. Подумаем, нельзя ли расши­рить класс объектов, которые по-прежнему будут обозначаться буквами а, b и с и для которых по-прежнему будут верны все сформулированные нами правила, хотя сложение уже нельзя будет понимать как последовательное увеличение числа на единицу, а возведение в степень — как последовательное пе­ремножение целых чисел.

§ 3. Шаг в сторону и обобщение

Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии с определением вычитания найти число, которое дает 3, если к нему добавить 5. Перебрав все целые положительные числа (а ведь в правилах говорится только о таких числах), вы скажете, что задача не решается. Однако можно сделать то, что потом станет системой, великой идеей: наткнувшись на неразрешимую задачу, надо сначала отойти в сторону, а затем обобщить. Пока алгебра состоит для нас из правил и целых чисел. Забудем о первоначальных определениях сложения и умножения, но сохраним правила (22.1) и (22.2) и предположим, что они верны вообще не только для целых положительных чисел (для них эти правила были выведены), а для более широкого класса чисел. Раньше мы за­писывали целые положительные числа в виде символов, чтобы вывести правила; теперь правила будут определять символы, а символы будут представителями каких-то более общих чисел. Манипулируя правилами, можно показать, что 3-5=0-2. Давайте определим новые числа: 0-1, 0-2, 0-3, 0-4 и т. д. и назовем их