2a. Пространство. Время. Движение | страница 10
То, чем мы займемся, с точки зрения математики, не будет настоящей алгеброй. Математик главным образом интересуется тем, как изложить то или иное математическое утверждение и какие предположения обязательны при выводе теоремы, а какие нет. Для нас важнее результат доказательства. Например, теорема Пифагора интересна для нас потому, что в ней сообщается, что сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы; это очень интересный факт, и мы будем использовать его, не заботясь о том, действительно ли это доказанная Пифагором теорема или просто аксиома. В том же самом духе мы изложим элементарную алгебру, по возможности чисто качественно. Мы говорим элементарная алгебра потому, что существует ветвь математики, называемая высшей алгеброй, где может оказаться неверным, что ab=ba, но таких вещей мы касаться не будем.
Изучение алгебры начнем с середины. Предположим, что нам уже известно, что существуют целые числа, что есть нуль и что значит увеличить число на единицу. Не говорите, пожалуйста: «Вот так середина!», потому что для математика это середина, ведь он знает теорию множеств и может вывести все эти свойства целых чисел. Но мы не будем вторгаться в область философии математики и математической логики, а ограничимся предположением, что нам известны целые числа и мы умеем считать. Если взять целое число а и прибавить к нему b раз по единице, мы получим число а+b; этим определяется сложение целых чисел.
Определив сложение, проделаем вот что: начнем с нуля и прибавим к нему b раз число а; таким образом мы определим умножение целых чисел и будем называть результат произведением а на b.
Теперь можно проделать ряд последовательных умножений: если умножить единицу b раз на число а, то мы возведем а в степень b и запишем результат в виде а>b.
Исходя из этих определений, легко доказать такие соотношения
Эти результаты хорошо известны, мы не хотим долго на них останавливаться, а выписаны они больше для порядка. Конечно, 1 и 0 обладают особыми свойствами, например а+0=а, а·1=а и а в первой степени равно а.
Составляя табличку формул (22.1), мы пользовались такими свойствами, как непрерывность и соотношение порядка; дать им определение очень трудно: для этого создана целая наука. Кроме того, мы выписали, конечно, слишком много «правил»; некоторые из этих правил можно вывести из других, но не будем на этом останавливаться.
§ 2. Обратные операции
Кроме прямых операций сложения, умножения и возведения в степень, существуют