4a. Кинетика. Теплота. Звук | страница 18
Это весьма простое соотношение и составляет точное содержание свойства II.
Перейдем теперь к свойству I. Предположим, что положение элемента объема воздуха, не возмущенного звуковой волной, есть х, а звук смещает его в момент времени t на величину c(х,t), так что его новое положение есть x+c(x,t), как показано на фиг. 47.3.
Фиг. 47.3. Смещение воздуха в точке х есть c (х,t), а в точке х+Dx равно c(x+Dx,t).
Первоначальный объем, приходящийся на единицу площади в плоской звуковой волне, есть Dx, а окончательный объем равен Dx+c(x+Dx,t)-c(x,t).
Далее, положение соседнего элемента объема есть х+Dx, и его смещенное положение есть х+Dx+c(х+Dx,t). Теперь можно найти изменение плотности. Поскольку мы рассматриваем плоскую волну, удобно взять единичную площадку, перпендикулярную оси х, т. е. направлению распространения волны. Количество воздуха, приходящееся на единичную площадку в интервале Dx, есть r>0Dx, где r>0 — невозмущенная, или равновесная, плотность воздуха. Эта порция воздуха, смещенная звуковой волной, будет находиться теперь между x+c (x,t) и x+Dх+c (х+Dx,t), причем количество воздуха в этом интервале то же самое, что в интервале Dx до прихода волны. Если через r обозначить новую плотность, то
r>0Dx=r [x+Dx+c (x+Dx,t)-x-c (x,t)]. (47.5)
Поскольку Dx мало, можно написать c (x+Dx,t)-c (x,t)=(дc/дx)Dx. Здесь уже появляется частная производная, потому что c зависит и от x, и от времени. Наше уравнение принимает вид
r>0Dx =r ((дc/дx) Dx +Dx), (47.6)
или
r>0=(r>0+r>u)дc/дx+r>0+r>u. (47.7)
Но в звуковой волне все изменения малы, так что r>u мало, c мало и дc/дх тоже мало. Поэтому в уравнении, которое мы только что написали,
r>u=-r>0(дc/дx)- r>u(дc/дx), (47.8)
можно пренебречь r>u(дc/дх) по сравнению с r>0(дc/дх). Так мы приходим к соотношению, которое требовалось согласно свойству I:
(I) r>u=-r>0дc/дx. (47.9)
Именно такой вид уравнения можно было ожидать из чисто физических соображений. Если смещение различно для разных х, плотность будет изменяться. Знак тоже правильный: если смещение c растет с ростом х, так что воздух расширяется, плотность должна уменьшаться.
Теперь нам нужно найти третье уравнение — уравнение движения, производимого избытком давления. Зная соотношение между силой и давлением, можно получить уравнение движения. Возьмем объем воздуха толщиной Dx и с единичной площадью грани, перпендикулярной х, тогда масса воздуха в этом объеме есть r