5a. Электричество и магнетизм | страница 6



то поля по обе стороны плоскости должны совпадать (по величине). На этот раз за гауссову поверхность мы примем прямоугольный ящик, пересекающий нашу плоскость (фиг. 5.6). Каждая из граней, параллельных плоскости, имеет площадь А. Поле нор­мально к этим двум граням и параллельно остальным четырем. Суммарный поток равен Е, умноженному на площадь первой грани, плюс Е, умноженному на площадь противоположной грани; от остальных граней никаких слагаемых

не войдет. За­ряд внутри ящика равен sА. Уравнивая поток с зарядом, на­пишем


откуда

(5.3)

Простой, но важный результат.



Фиг. 5.6. Электрическое поле во­зле однородно заряженной плоско­сти, найденное с помощью теоремы Гаусса, применяемой к воображае­мому ящику.

1 — однородно заряженная плоскость;

2 — гауссова поверхность.

Вы помните, может быть, что тот же результат был получен в первых главах интегрирова­нием по всей плоскости. Закон Гаусса дает ответ намного бы­стрее (хотя он не так широко применим, как прежний метод).

Подчеркнем, что этот резуль­тат относится только к полю,

созданному зарядами, размещенными на плоскости. Если по соседству есть другие заряды, общее поле близ плоскости бы­ло бы суммой (5.3) и поля прочих зарядов. Закон Гаусса тогда только гарантировал бы, что


(5.4)

где E>1и Е>2поля, направленные на каждой стороне плоско­сти наружу от нее.

Задача о двух параллельных плоскостях с равными и про­тивоположными плотностями зарядов +s и -sрешается тоже просто, если только снова предположить, что внешний мир абсолютно симметричен. Составите ли вы суперпозицию двух ре­шений для отдельных плоскостей или построите гауссов ящик, охватывающий обе плоскости, в обоих случаях легко видеть, что поле снаружи плоскостей равно нулю (фиг. 5.7, а). Но, зак­лючив в ящик только одну или только другую поверхность, как показано на фиг. 5.7, б или в, мы легко обнаружим, что поле между плоскостями должно быть вдвое больше поля отдельной плоскости.


Фиг. 5.7. Поле между двумя за­ряженными листами равно s/e>0.


Итог таков:

(5.5)

Е (снаружи) =0. (5.6)

§ 7. Однородно заряженный шар; заряженная сфера

В гл. 4 мы уже применяли закон Гаусса, когда должны были найти поле вне однородно заряженной шаровой области. Тот же метод может дать нам и поле в точках внутри шара. Этот рас­чет, например, может быть использован для получения хоро­шего приближения к полю внутри атомного ядра. Вопреки тому, что протоны в ядре взаимно отталкиваются, они из-за сильного ядерного притяжения распределены по всему ядру почти од­нородно.