5a. Электричество и магнетизм | страница 4



системы сил.

§ 4. Устойчивость атомов

Раз заряды не могут иметь устойчивого положения, то, разу­меется, неправильно представлять вещество построенным из ста­тических точечных зарядов (электронов и протонов), управляе­мых только законами электростатики. Такая статическая кон­фигурация немыслима, она обвалится!



Фиг. 5.3. Томсоновская модель атома.

1 однородно распределенный положи­тельный заряд; 2 — отрицательный заряд, сконцентрированный в центре.

В свое время предлагалось считать положительный заряд атома распределенным однородно по шару, а отрицательные заряды (электроны) покоящимися внутри положительного за­ряда (фиг. 5.3). Это была первая атомная модель, предложен­ная Томсоном. Но Резерфорд из опыта, проделанного Гейгером и Марсденом, сделал вывод, что положительные заряды очень сильно сконцентрированы и образуют то, что мы называем ядром. И статическую модель Томсона пришлось отставить. Затем Резер­форд и Бор предположили, что равновесие может быть динами­ческим — электроны обращаются по орбитам (фиг. 5.4). Орби­тальное движение в этом случае удерживало бы электроны от падения на ядро. Но мы с вами знакомы, по крайней мере, с од­ной трудностью, возникающей и при таком представлении об атоме. При движении по орбитам электроны ускоряются (из-за вращательного движения), и поэтому они излучали бы энергию. При этом они потеряют кинетическую энергию, необходимую для того, чтобы остаться на орбитах, и они должны будут падать, двигаясь по спирали, на ядро. Опять неустойчивость!

Сейчас стабильность атома объясняется с помощью кванто­вой механики. Электростатические силы притягивают электрон к ядру насколько это возможно, но электрон вынужден оста­ваться размазанным в пространстве на расстоянии, диктуемом принципом неопределенности. Если бы он держался в очень узком пространстве близ ядра, у него была бы большая неопре­деленность в импульсе. Но это означало бы, что его ожидаемая энергия высока и может быть использована для того, чтобы разорвать электрическое притяжение ядра.



Фиг. 5.4. Модель атома Резерфорда—Бора.

1 — положительные ядра в центре;

2 отрицательные электроны на пла­нетных орбитах.

Выходит, что в ито­ге электрическое равновесие не слишком отличается от идеи Томсона, но только на этот раз размазан отрицательный заряд (потому что масса электрона несравненно меньше массы про­тона).

§ 5. Поле заряженной прямой линии

Закон Гаусса может быть применен для решения множества задач, связанных с электрическим полем, обладающим специаль­ной симметрией (чаще всего сферической, цилиндрической или плоской). В оставшейся части этой главы мы займемся приме­нением закона Гаусса к некоторым задачам подобного рода. Легкость, с которой будут решаться эти задачи, может создать ошибочное впечатление о мощи метода и о возможности с его помощью перейти к решению многих других задач. К сожале­нию, это не так. Список задач, легко решаемых по закону Гаус­са, быстро исчерпывается. В дальнейших главах мы разовьем куда более мощные методы исследования электростатических полей.