6. Электродинамика | страница 74
Это нужно проинтегрировать по x, у и по z. И здесь напрашивается тот же фокус: чтобы избавиться от df/dx, мы проинтегрируем по x по частям. Это приведет к добавочному дифференцированию j по x. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством
Проинтегрированный член равен нулю, так как мы считаем f равным нулю на бесконечности. (Это отвечает обращению h в нуль при t>1и t>2. Так что наш принцип более точно формулируется следующим образом: U* для правильного j меньше, чем для любого другого
j(х, у, z), обладающего теми же значениями на бесконечности.) Затем мы проделаем то же с у и с z. Наш интеграл DU* обратится в
Чтобы эта вариация была равна нулю при любом произвольном f, коэффициент при f должен быть равен нулю. Значит,
Мы вернулись к нашему старому уравнению. Значит, наше «минимальное» предложение верно. Его можно обобщить, если слегка изменить выкладки. Вернемся назад и проинтегрируем по частям, не расписывая все покомпонентно. Начнем с того, что напишем следующее равенство:
Продифференцировав левую часть, я могу показать, что она в точности равна правой. Это уравнение подходит для того, чтобы провести интегрирование но частям. В нашем интеграле DU* мы заменяем Сj·Сf на —fС>2j+С·(fС>j) и затем интегрируем это по объему. Член с дивергенцией после интегрирования по объему заменяется интегралом по поверхности:
А поскольку мы интегрируем по всему пространству, то поверхность в этом интеграле лежит на бесконечности. Значит, f=0, и мы получаем прежний результат.
Только теперь мы начинаем понимать, как решать задачи, в которых мы не знаем, где расположены все заряды. Пусть мы имеем проводники, на которых как-то распределены заряды. Если потенциалы на всех проводниках зафиксированы, то наш принцип минимума все еще разрешается применять. Интегрирование в U* мы проведем только по области, лежащей снаружи всех проводников. Но раз мы не можем на проводниках менять j, то на их поверхности f=0, и поверхностный интеграл
тоже равен нулю. Остающееся объемное интегрирование нужно проделывать только в промежутках между проводниками.
И мы, конечно, снова получаем уравнение Пуассона
Мы, стало быть, показали, что наш первоначальный интеграл U* достигает минимума и тогда, когда он вычисляется в пространстве между проводниками, каждый из которых находится при фиксированном потенциале [это значит, что каждая пробная функция j(х, у, z)