6. Электродинамика | страница 73




Другой способ утверждать то же самое заключается в следую­щем: надо вычислить интеграл U*


это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала j(x, у, z) это выра­жение достигает минимума.

Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию j. Мы хотим показать, что когда в ка­честве j мы возьмем правильное значение потенциала j плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем

здесь j — это то, что мы ищем; но мы проварьируем j, чтобы увидеть, каким он должен быть для того, чтобы вариация U* оказалась первого порядка малости. В первом члене U* нам нужно написать



Единственный член первого порядка, который будет ме­няться, таков:



Во втором члене U* подынтегральное выражение примет вид



изменяющаяся часть здесь равна rf. Оставляя только меняю­щиеся члены, получим интеграл


Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. По­смотрим, что это за производные. Скалярное произведение равно



Это нужно проинтегрировать по x, у и по z. И здесь напраши­вается тот же фокус: чтобы избавиться от df/dx, мы проинтегри­руем по х по частям. Это приведет к добавочному дифференци­рованию j по х. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством


Другой способ утверждать то же самое заключается в следую­щем: надо вычислить интеграл U*



это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала j(x, у, z) это выра­жение достигает минимума.

Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию j. Мы хотим показать, что когда в ка­честве j мы возьмем правильное значение потенциала j плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем


здесь j — это то, что мы ищем; но мы проварьируем j, чтобы увидеть, каким он должен быть для того, чтобы вариация U* оказалась первого порядка малости. В первом члене U* нам нужно написать


Единственный член первого порядка, который будет ме­няться, таков:


Во втором члене U* подынтегральное выражение примет вид



изменяющаяся часть здесь равна rf. Оставляя только меняю­щиеся члены, получим интеграл



Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. По­смотрим, что это за производные. Скалярное произведение равно