6. Электродинамика | страница 66



расставляете все так, чтобы получился интеграл в таком виде: «сдвиг (h), умноженный на что получится», но чтобы в нем не было никаких производных от h(никаких dh/dt). Не­пременно нужно так все преобразовать, чтобы осталось «нечто», умноженное на h. Сейчас вы поймете, отчего это так важно. (Существуют формулы, которые подскажут вам, как в некоторых случаях можно это проделать без каких-либо выкладок; но они не так уж общи, чтобы стоило заучивать их; лучше всего проделывать выкладки так, как это делаем мы.)

Как же я могу переделать член dh/dt, чтобы в нем появилось h? Я могу добиться этого, интегрируя по частям. Оказывается, что в вариационном исчислении весь фокус в том и состоит, чтобы расписать вариацию S и затем проинтегрировать по час­тям так, чтобы производные от h исчезли. Во всех задачах, в которых появляются производные, проделывается такой же фокус.


Припомните общий принцип интегрирования по частям. Если у вас есть произвольная функция f, умноженная на dh/dt и проинтегрированная по t, то вы расписываете производную от hf:


В интересующем вас интеграле стоит как раз последнее слага­емое, так что


В нашей формуле для dS за функцию f принимается произ­ведение т на dx/dt; поэтому я получаю для dS выражение


В первый член должны быть подставлены пределы интегриро­вания t>1и t>2. Тогда я получу под интегралом член от интегри­рования по частям и последний член, оставшийся при преоб­разовании неизменным.


А теперь происходит то, что бывает всегда,— проинтегри­рованная часть исчезает. (А если не исчезает, то нужно переформулировать принцип, добавив условия, обеспечивающие такое исчезновение!) Мы уже говорили, что h на концах пути должна быть равна нулю. Ведь в чем состоит наш принцип? В том, что действие минимально при условии, что варьируемая кривая начинается и кончается в избранных точках. Это зна­чит, что h(t>1)=0 и h(t>2)=0. Поэтому проинтегрированный член получается равным нулю. Мы собираем воедино остальные члены и пишем


Вариация S теперь приобрела такой вид, какой мы хотели ей придать: что-то стоит в скобках (обозначим его F), и все это умножено на h(t)и проинтегрировано от t>1до t>2.

У нас вышло, что интеграл от какого-то выражения, умно­женного на h(t), всегда равен нулю:


Стоит какая-то функция от t; умножаю ее на h(t) и интегрирую ее от начала до конца. И какова бы ни была h, я получаю нуль. Это означает, что функция F(t)равна нулю. В общем-то это очевидно, но я на всякий случай покажу вам один из способов доказательства.