6. Электродинамика | страница 64




Это-то свойство мы и со­бираемся использовать для расчета настоящего пути.

Если путь правильный, то кривая, чуть-чуть отличная от него, не приведет в первом приближении к изменению в вели­чине действия. Все изменения, если это был действительно минимум, возникнут только во втором приближении.

Это легко доказать. Если при каком-то отклонении от кри­вой возникают изменения в первом порядке, то эти изменения в действии пропорциональны отклонению. Они, по всей вероятности, увеличат действие; иначе это не был бы минимум. Но раз изменения пропорциональны отклонению, то перемена знака отклонения уменьшит действие. Выходит, что при отклонении и одну сторону действие возрастает, а при отклонении в обрат­ную сторону — убывает. Единственная возможность того, что­бы это действительно был минимум,— это чтобы в первом при­ближении никаких изменений не происходило и изменения были бы пропорциональны квадрату отклонения от настоящего пути.

Итак, мы пойдем по следующему пути: обозначим через x(t) (с чертой внизу) истинный путь — тот, который мы хотим найти. Возьмем некоторый пробный путь x(t), отличаю­щийся от искомого на неболь­шую величину, которую мы обозначим h(t).



Идея состоит в том, что если мы подсчитаем действие S на пути x(t), то разность между этим S и тем дейст­вием, которое мы вычислили для пути x(t) (для простоты

оно будет обозначено S), или разность между S и S, должна быть в первом приближении по h нулем. Они могут отли­чаться во втором порядке, но в первом разность обязана быть нулем.

И это должно соблюдаться для любой h. Впрочем, не со­всем для любой. Метод требует принимать во внимание только те пути, которые все начинаются и кончаются в одной и той же паре точек, т. е. всякий путь должен начинаться в определен­ной точке в момент t>1 и кончаться в другой определенной точке в момент t>2. Эти точки и моменты фиксируются. Так что наша функция h(отклонение) должна быть равна нулю на обоих концах: h(t>1)=0 и h(t>2)=0. При этом условии наша математическая задача становится полностью опре­деленной.

Если бы вы не знали дифференциального исчисления, вы могли бы проделать такую же вещь для отыскания минимума обычной функции f(x). Вы бы задумались над тем, что случится, если взять f(x) и прибавить к х малую величину h, и доказы­вали бы, что поправка к f(x) в первом порядке по h долж­на в минимуме быть равна нулю. Вы бы подставили x+h вместо х и разложили бы f(x+h) с точностью до первой сте­пени