6. Электродинамика | страница 50
Когда мы добавили новый член в уравнение для ротора Е, мы обнаружили, что им описывается целый новый класс явлений. Мы увидим также, что небольшая добавка Максвелла к уравнению для СXB имеет далеко идущие последствия. Мы затронем лишь некоторые из них в этой главе.
§ 2. Что дает добавка
В качестве нашего первого примера рассмотрим, что происходит со сферически симметричным радиальным распределением тока. Представим себе маленькую сферу с нанесенным на ней радиоактивным веществом. Это радиоактивное вещество испускает наружу заряженные частицы. (Мы можем представить также большой кусок желе с маленьким отверстием в центре, в которое с помощью шприца впрыскиваются какие-то заряды и из которого заряды медленно просачиваются.)
Фuг18.1.Каково магнитное поле сферически симметричного тока?
В любом случае мы имели бы ток, который повсюду направлен по радиусу наружу. Будем считать, что величина его одинакова во всех направлениях.
Пусть полный заряд внутри сферы произвольного радиуса r есть Q(r). Если плотность радиального тока при таком же радиусе равна j(r), то уравнение (18.2) требует, чтобы Q уменьшалось со скоростью
(18.5)
Спросим теперь о магнитном поле, создаваемом токами в этом случае. Предположим, мы начертили какую-то петлю Г на сфере радиуса r(фиг. 18.1). Сквозь петлю проходит какой-то ток, поэтому можно ожидать, что магнитное поле циркулирует в направлении, указанном на фигуре.
И сразу возникает затруднение. Как может поле В иметь какое-то особое направление на сфере? При другом выборе петли Г мы бы заключили, что ее направление прямо противоположно указанному. Поэтому возможна ли какая-либо циркуляция В вокруг токов?
Нас спасают уравнения Максвелла. Циркуляция В зависит не только от полного тока, проходящего сквозь петлю Г, но и от скорости изменения со временем электрического потока через нее. Должно быть так, чтобы эти две части как раз погашались. Посмотрим, получается ли это.
Электрическое поле на расстоянии r должно быть равно Q(г)/4pe>0r>2, пока, как мы предположили, заряд распределен симметрично. Поле радиально, и скорость его изменения тогда равна
(18.6)
Сравнивая это с (18.5), мы видим, что для любого расстояния
(18.7)
В уравнении IV (табл. 18.1) оба члена от источника погашаются и ротор В равен всегда нулю. Магнитного поля в нашем примере нет.
В качестве второго нашего примера рассмотрим магнитное поле провода, используемого для зарядки плоского конденсатора (фиг. 18.2). Если заряд