6. Электродинамика | страница 49
(18.2)
фактически есть наше определение j. Это уравнение выражает самый фундаментальный закон — сохранение электрического заряда: любой поток заряда должен поступать из какого-то запаса. Максвелл заметил эту трудность и, чтобы избежать ее, предложил добавить dE/dt в правую часть уравнения (18.1); тогда он и получил уравнение IV в табл. 18.1:
Во времена Максвелла еще не привыкли мыслить в терминах абстрактных полей. Максвелл обсуждал свои идеи с помощью модели, в которой вакуум был подобен упругому телу. Он пытался также объяснить смысл своего нового уравнения с помощью механической модели. Теория Максвелла принималась очень неохотно, во-первых, из-за модели, а, во-вторых, потому, что вначале не было экспериментального подтверждения. Сейчас мы лучше понимаем, что дело в самих уравнениях, а не в модели, с помощью которой они были получены. Мы можем только задать вопрос, правильны ли эти уравнения или они ошибочны. Ответ дает эксперимент. И уравнения Максвелла были подтверждены в бессчетных экспериментах. Если мы отбросим все строительные леса, которыми пользовался Максвелл, чтобы построить уравнения, мы придем к заключению, что прекрасное здание, созданное Максвеллом, держится само по себе. Он свел воедино все законы электричества и магнетизма и создал законченную и прекрасную теорию.
Давайте покажем, что добавочный член имеет тот самый вид, который требуется, чтобы преодолеть обнаруженную Максвеллом трудность. Взяв дивергенцию его уравнения (IV в табл. 18.1), мы должны получить, что дивергенция правой части равна нулю:
(18.3)
Во втором слагаемом можно переставить порядок дифференцирования по координатам и времени, так что уравнение может быть переписано в виде
(18.4)
Но, согласно первому из уравнений Максвелла, дивергенция Е равна r/e>0. Подставляя это равенство в (18.4), мы придем к уравнению (18.2), которое, как мы знаем, правильно. И наоборот, если мы принимаем уравнения Максвелла (а мы принимаем их потому, что никто никогда не обнаружил эксперимента, который опроверг бы их), мы должны прийти к выводу, что заряд всегда сохраняется.
Законы физики не дают ответа на вопрос: «Что случится, если заряд внезапно возникнет в этой точке, какие будут при этом электромагнитные эффекты?». Ответ дать нельзя, потому что наши уравнения утверждают, что такого не происходит. Если бы это случилось, нам понадобились бы новые законы, но мы не можем сказать, какими бы они были. Нам не приходилось наблюдать, как ведет себя мир без сохранения заряда. Согласно нашим уравнениям, если вы внезапно поместите заряд в некоторой точке, вы должны принести его туда откуда-то еще. В таком случае мы можем говорить о том, что произошло.