Том 28. Математика жизни. Численные модели в биологии и экологии | страница 49



будет равен 2, так как:



Швейцарский математик Габриэль Крамер (1704–1752) сформулировал правило, носящее его имя, которое позволяет решать системы линейных уравнений с помощью определителей.


Отметим, что мы заменили круглые скобки, типичные для матрицы, двумя прямыми линиями — именно так обозначаются определители. Любопытно, что определители были созданы раньше, чем матрицы, и были известны в Древнем Китае за 300 лет до Рождества Христова. Древние китайцы использовали понятие, схожее с понятием определителя, располагая неизвестные системы линейных уравнений на шахматной доске. Европейские математики впервые применили определители для решения систем линейных уравнений лишь в 1750 году (это сделал Габриэль Крамер). В XIX веке с определителями работали другие математики, в частности Коши. Матрицы появились позднее, так как нужно было дать какое-то название объекту, для которого рассчитывались определители.


Определитель квадратной матрицы размером 3 x 3

Мы уже показали, как вычислить определитель второго порядка. Сделаем еще один шаг вперед. Пусть дана квадратная матрица третьего порядка:


Будем считать, что каждому ее элементу соответствует знак + или —, как если бы речь шла о кристалле хлорида натрия, то есть обычной поваренной соли:


Выберем, к примеру, первую строку матрицы и исключим ее из рассмотрения. Затем исключим элементы первого столбца матрицы:


Выполним над элементами матрицы следующие операции:


Обратите внимание, что а>11 положительно, так как этому элементу матрицы соответствует знак +.

После того как мы исключили из рассмотрения первую строку и первый столбец матрицы, оставшиеся элементы образуют новую матрицу. Определитель полученной матрицы называется минором М>ij, где и j — номер строки и столбца, исключенных из рассмотрения. В нашем примере = 1, j = 1.

Выполним аналогичные действия для второго столбца матрицы:


Учитывая, что элемент а>12  имеет знак —, получим:


Повторим аналогичные действия для третьего столбца:


С учетом того, что а>13  имеет знак +, получим:


Теперь, чтобы вычислить определитель матрицы А, нужно свести полученные выше результаты в одно выражение:


Пусть дана матрица A:


Ее определитель вычисляется следующим образом:


Предположим, что даны три вектора, исходящие из одной точки. Допустим, их координаты таковы: u>-> = (2, -1, 4), v>-> = (3, 3, -2) и w>-> = (-3, 2, 1). Если мы вычислим определитель:


получим 71. Что означает это число? Поскольку в нашем примере векторы исходят из одной точки, значение определителя равно объему параллелепипеда, построенного на этих трех векторах.