Том 28. Математика жизни. Численные модели в биологии и экологии | страница 27
Затем перенесем dt в правую часть так, что dy = r·y·dt. Это уравнение словно подсказывает, что нужно сгруппировать в одной части все члены, связанные с у. Следовательно, перенесем у в левую часть. Имеем dy/у = r·dt.
Наконец, чтобы решить уравнение, нужно взять интеграл от обеих его частей, как показано далее:
На этом этапе у читателя может создаться впечатление, что мы не решаем задачу, а только усложняем рассуждения. Внимательно рассмотрим выражение. В правой его части записан простейший табличный интеграл. Так как r — константа, ее можно вынести за знак интеграла. Имеем:
Напомним, что
В левой части также записан табличный интеграл. Обратите внимание, что, поскольку dy записано в числителе, у — в знаменателе, интеграл будет равен логарифму у, а именно:
Поэтому
ln(y) = r·t + C.
Если мы избавимся от логарифма и сгруппируем члены выражения, то найдем решение дифференциального уравнения у' = r·у. Для этого подставим в выражение величину, обозначающую исходное число бактерий (ранее мы обозначили его через у>0). Определим функцию у:
y = y>0e>rt
В 1838 году математик Пьер Франсуа Ферхюльст видоизменил модель Мальтуса с учетом того, что размеры окружающей среды ограничены, поэтому должно существовать некоторое максимальное значение численности населения k, известное как поддерживающая емкость среды. Ферхюльст получил следующее дифференциальное уравнение: у' = r·y(k — у).
Бельгийский математик Пьер Франсуа Ферхюльст (1804–1849), один из величайших специалистов по теории чисел первой половины XIX века.
Решением уравнения Ферхюльста является знаменитое логистическое уравнение, которое описывает не только рост населения, но и распространение эпидемий и рост социальных сетей в интернете:
Логистическое уравнение применимо для анализа S-образного роста — экспоненциального, но ограниченного количеством ресурсов, будь то физическое пространство, продовольствие, емкость рынка мобильной связи или число пользователей социальной сети. Экспоненциальный рост является неограниченным, то есть утопичным, возможным только в мире с неисчерпаемыми ресурсами. В логистической же модели рассматривается реальный мир, к примеру планета Земля, ресурсы которой, что очевидно, ограничены.
Любопытно отметить, что эти модели были предложены в XIX веке, в разгар промышленной революции. В эту эпоху жили такие ученые, как Чарльз Дарвин, создатель теории эволюции путем естественного отбора, и Чарльз Бэббидж, изобретатель аналитической и разностной машин — прообразов современных компьютеров. Эти любопытные совпадения предвосхитили плодотворный союз математики и компьютерных технологий, который сыграл в XX веке определяющую роль в изучении жизни.