Том 12. Числа - основа гармонии. Музыка и математика | страница 9
В так называемой английской (или немецкой) нотации семь нот обозначались заглавными латинскими буквами от А до G, ноты следующей октавы — строчными буквами от а до g, ноты третьей октавы — удвоенными строчными буквами (аа, bb, сс, dd, ее, ff, gg). Так свои названия получили семь звуков, соответствующие белым клавишам фортепиано. Остальные пять звуков, соответствующие черным клавишам, получили производные от основных звуков названия позднее, с появлением понятий «бемоль», «бекар» и «диез».
В XI веке тосканский монах Гвидо д'Ареццо (ок. 995 — ок. 1050) разработал набор мнемонических правил для чтения нот. Возможно, самым известным из них является так называемая гвидонова рука. В этом методе ноты условно располагаются в алфавитном порядке на пальцах руки. Гвидо д'Ареццо также дал названия всем нотам. Он обозначил каждый звук первым слогом в каждой строке очень известной в то время молитвы Иоанну Крестителю:
Utqueant laxis,
resonare fibris,
Mlra gestorum,
famuli tuorum,
Solve polluti,
Labii reatum,
Sancte lohannes.
Позднее слог ut заменился на do. Так появились названия нот, которые используются и сейчас.
Рисунок «гвидоновой руки» из средневековой рукописи.
* * *
Если продолжить цепочку квинт, получится 12 звуков так называемого хроматического строя, составляющие квинтовый круг:
где знаки бемоль (
После того как мы получили 12 нот, упорядочив квинты, нетрудно вычислить частоты всех нот, лежащих в пределах одной октавы, путем сдвига на одну или несколько октав.
Подсчеты
Определим частоту каждой ноты с помощью цепочки квинт и сдвига на одну или несколько октав, то есть путем деления и умножения частоты на 2. Напомним, что отношение между частотами звуков всегда будет принимать значение между 1 (соотношение частоты одного и того же звука) и 2 (отношение частот нот до соседних октав).
Сначала определим относительную частоту ноты соль, которая отстоит на одну квинту от ноты до:
соль = 3/2
Затем определим частоту ноты ре, которая отстоит на одну квинту от соль (необходимо умножить частоту на 3/2), но потребуется сдвиг на одну октаву ниже (умножить частоту на 1/2):
Расстояние между до и ре называется целым тоном. Как и следовало ожидать, один тон равен двум полутонам.
Затем определим относительную частоту ноты ля, отстоящей на одну квинту от ре:
Нота ми отстоит на одну квинту от ля, но потребуется сдвиг на одну октаву ниже: