Том 13. Абсолютная точность и другие иллюзии. Секреты статистики | страница 27
5!/(3!·2!) = 10
Теперь у нас есть все данные, необходимые для вычисления искомой вероятности. Она равна
Зачем нам знать вероятность того, что при пяти бросках монеты в произвольном порядке три раза выпадет решка? Эта задача сама по себе не представляет большого интереса, но далее мы покажем, что аналогичным способом можно решить много других, очень интересных задач.
29 апреля 2004 года некий читатель обратился в редакцию популярной газеты с вопросом: «Я использовал Excel, чтобы сгенерировать случайные числа с помощью функции «=СЛЧИС ()», но эти числа всегда очень маленькие и почти равны нулю. Мне нужна система, чтобы сгенерировать шесть чисел, не превышающих 49, для простой лотереи». По-видимому, читатель думал, что если число является случайным, то оно не подчиняется никаким правилам. Это не совсем так. Существует несколько видов случайных величин. Они делятся на непрерывные, например вес, длина, плотность и так далее, и дискретные (принимающие одно из множества отдельных значений), например число неисправных деталей в партии, количество автомобилей, приезжающих на заправку ежеминутно, и другие. В действительности существует целый «каталог» различных видов распределения вероятностей. Всякий раз, когда мы имеем дело со случайной величиной, следует определить, не подчиняется ли она какому-то конкретному закону распределения вероятностей. В большинстве случаев это действительно так, и нам не потребуется выводить формулы для расчета вероятностей, среднего значения и других интересных параметров: это уже сделали до нас.
Сначала может показаться, что отличить случайные величины от неслучайных непросто, подобно тому как человеку, не знакомому с музыкой, сложно разобраться в разных музыкальных направлениях. Однако несколько практических примеров помогут вам научиться с легкостью их распознавать. Далее мы расскажем о некоторых свойствах и примерах использования трех наиболее известных законов распределения вероятностей.
То, что нам уже знакомо: биномиальное распределение С помощью общих правил вычисления вероятностей мы смогли установить вероятность выпадения 3 решек и 2 орлов (в произвольном порядке) при 5 бросках монеты с помощью следующего выражения:
В целом число успешных исходов при выполнении n опытов (вероятность успешного исхода неизменна и равна р) — это случайная величина, которая подчиняется очень известному закону распределения вероятностей. Это распределение называется биномиальным. Если мы сталкиваемся с этим распределением, нам не нужно выводить новые формулы для вычисления вероятностей.