Том 13. Абсолютная точность и другие иллюзии. Секреты статистики | страница 10
* * *
НЕМНОГО ФОРМУЛ
Общая формула расчета дисперсии такова:
где x>i — значения элементов выборки, μ — среднее арифметическое, N — число элементов выборки. Формула расчета среднеквадратического отклонения такова:
* * *
Коэффициент вариации
Какая величина варьируется больше — вес котов или вес коров? Допустим, что средний вес кота равен 4 кг и в 95 % случаев он лежит в интервале от 3 до 5 кг. Предположим, что вес коровы в 95 % случаев лежит в интервале от 480 до 500 кг. Если мы изучим вес котов, то увидим, что он варьируется очень сильно (некоторые коты весят почти в два раза больше других), а вес коров различается несущественно.
Среднеквадратическое отклонение веса котов будет находиться в пределах 0,5 кг. В соответствии с закономерностью вариации весов, 95 % выборки отстоит от среднего значения не более чем на два среднеквадратических отклонения. Об этом будет рассказано в следующей главе, посвященной нормальному распределению. Среднеквадратическое отклонение веса коров будет лежать в пределах 5 кг, что в 10 раз больше, однако вес коров варьируется меньше.
Чтобы разрешить этот парадокс, возникающий при сравнении вариаций, вводится коэффициент вариации, который равен частному среднеквадратического отклонения и среднего значения:
В нашем примере коэффициент вариации для веса котов равен 0,125, для веса коров — 0,01. Коэффициент вариации — безразмерная величина.
* * *
ДВЕ КЛАВИШИ ДЛЯ РАСЧЕТА СРЕДНЕКВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ
Несмотря на то что дисперсия и среднеквадратическое отклонение — важнейшие показатели статистики, их часто пытаются скрыть. При попытке обобщить большую выборку данных мы можем столкнуться с одной из следующих ситуаций.
1. Интерес представляют имеющиеся данные. Мы хотим определить среднее значение или среднеквадратическое отклонение этих данных, составляющих так называемую генеральную совокупность.
2. Имеющиеся данные являются выборкой из изучаемой генеральной совокупности. Иными словами, интерес представляет не столько среднее значение или среднеквадратическое отклонение, сколько оценка (некое представление) значений генеральной совокупности.
Расчет среднего значения в обоих случаях будет одинаков. Формула не изменится, так как наилучшей оценкой среднего значения генеральной совокупности является среднее значение выборки. Если мы хотим сделать какие-то выводы о генеральной совокупности на основании выборки, необходимо, чтобы выборка была репрезентативной.