Том 18. Открытие без границ. Бесконечность в математике | страница 23



Его рассуждения логически безупречны. Единственный их недостаток заключается в том, что переход, который он считает совершенно естественным, выполняется на недоступной нам территории, где правят бесконечно малые величины.

Окружность — это реальная фигура, равно как и многоугольник с бесконечным числом сторон, но когда мы рассматриваем переход от многоугольника с бесконечным числом сторон к окружности, мы имеем дело с актуальной бесконечностью. Пока этого не происходит, речь идет о потенциальной бесконечности.

* * *

КВАДРАТУРА СТОЛА

Задача о квадратуре обычно представляет сложность даже для очень простых фигур, например треугольника, пятиугольника или шестиугольника, и некоторые решения названы по именам их авторов. Например, чтобы решить задачу о квадратуре для равностороннего треугольника, нужно разделить его (разумеется, с помощью циркуля и линейки) следующим образом.



Из этих частей можно составить квадрат той же площади, что и треугольник.



Мати Грюнберг использовал это решение и создал стол-трансформер, который, в зависимости от ситуации, может иметь форму квадрата или треугольника.

* * *

Иррациональные числа

Без чисел 1, 2, 3, …» которые мы обычно используем при счете, во время измерений не обойтись. Если мы возьмем, например, сравнительно ровный кусок дерева и нанесем на него метки, соответствующие каждому числу так, что они будут находиться на равном расстоянии друг от друга, то сможем измерять расстояния. Расстояние между двумя соседними отметками будет единицей измерения.

Допустим, что наша единица измерения задается отрезком ОА, и мы хотим измерить длину доски В. Наложим единичный отрезок на доску и подсчитаем, сколько раз он укладывается на ней. Допустим, что отрезок укладывается на доске ровно пять раз. В этом случае говорят, что длина доски равна 5 единицам. Нам повезло: результат оказался целым числом.

Но могло случиться и так, что длина составила бы 4 с половиной единицы. Ничего страшного — это означает, что нужно всего лишь разделить нашу единицу измерения пополам. На языке математики это записывается дробью вида 1/2. Именно так изготавливаются линейки, и чем больше на них делений, тем выше точность измерений.

Очевидно, что точность измерений в этом случае будет иметь предел по чисто физическим причинам, связанным с шириной отметок и нашей способностью различить их. В школьных линейках расстояние между соседними отметками обычно равняется одному миллиметру, то есть единица измерения (сантиметр) делится на десять частей.